Section 2.3. Critical Points of
 Some Special Linear Systems

Note. In this section we consider $\vec{x}^{\prime}=A \vec{x}$ where A is a 2×2 constant matrix. We go through several cases based on the eigenvalues of A.

Case 1. Suppose the eigenvalues of A are real, distinct, and of the same sign. Then solutions are of the form

$$
\begin{aligned}
& x(t)=x_{0} e^{\lambda t} \\
& y(t)=y_{0} e^{\mu t}
\end{aligned}
$$

where $\lambda \neq \mu$. In the phase plane the origin is called a node and we have:

Case 2. Suppose the eigenvalues of A are real and of opposite signs, say $\lambda<0<\mu$. Then solutions are of the form

$$
\begin{aligned}
& x(t)=x_{0} e^{\lambda t} \\
& y(t)=y_{0} e^{\mu t} .
\end{aligned}
$$

In the phase plane the origin is called a saddle point and we have:

Case 3. Suppose the eigenvalues of A are complex conjugates with nonzero real parts. Consider $A=\left[\begin{array}{cc}\alpha & \beta \\ -\beta & \alpha\end{array}\right]$ where $\alpha \beta \neq 0$, which has $\alpha \pm i \beta$ as eigenvalues.
We have $x^{\prime}=\alpha x+\beta y \quad r^{\prime}=\alpha r$
Then the solution is

$$
y^{\prime}=-\beta x+\alpha y \quad \text { or, in polar cooramates, } \quad \theta^{\prime}=-\beta
$$

of the form

$$
\begin{aligned}
& r=r_{0} e^{\alpha t} \\
& \theta=\theta_{0}=\beta t
\end{aligned}
$$

In the phase plane we have for $\alpha<0$ and $\beta>0$ that the origin is asymptotically stable (and is called a spiral point; left) and for $\alpha>0$ and $\beta>0$ the origin is unstable (right):

This image is from Elementary Differential Equations and Boundary Value Prob-
lems, 5th Edition by Richard Diprima and William Boyce, John Wiley \& Sons (1991).

Example. Page 115 Exercise 8(b). Solve $\vec{x}^{\prime}=A \vec{x}$ where $A=\left[\begin{array}{ll}2 & 3 \\ -3 & 2\end{array}\right]$.

Case 4. Suppose the eigenvalues of A are purely imaginary. Consider $A=$ $\left[\begin{array}{ll}0 & \beta \\ -\beta & 0\end{array}\right]$ or, in polar coordinates, $\begin{aligned} & r^{\prime}=0 \\ & \theta^{\prime}=-\beta\end{aligned}$ we get

$$
\begin{aligned}
& r=r_{0} \\
& \theta=-\beta t+\theta_{0}
\end{aligned}
$$

In the phase plane the origin is stable (and called a center):

Case 5. Suppose the eigenvalues of A are the same. Consider $A=\left[\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right]$ or

$$
\begin{aligned}
& x^{\prime}=\lambda x \\
& y^{\prime}=\lambda y
\end{aligned} \text { and we get }
$$

$$
\begin{aligned}
& x=x_{0} e^{\lambda t} \\
& y=y_{0} e^{\lambda t} .
\end{aligned}
$$

We see, in polar coordinates, $r^{x}=x^{2}+y^{2}=e^{2 \lambda t}\left(x_{0}^{2}+y_{0}^{2}\right)$ and $\tan \theta=y / x=y_{0} / x_{0}$ (a constant). In the phase plane the origin is called a degenerate node (trajectories approach the origin at the same rate from any direction, in contrast to Case 1):

Also consider $A=\left[\begin{array}{ll}\lambda & 0 \\ 1 & \lambda\end{array}\right]$ or $\begin{aligned} & x^{\prime}=\lambda x \\ & y^{\prime}=x+\lambda y\end{aligned} \quad$ and we get

$$
\begin{aligned}
& x=x_{0} e^{\lambda t} \\
& y=y_{0} e^{\lambda t}+x_{0} t e^{\lambda t} .
\end{aligned}
$$

If $x_{0} \neq 0$, then in polar coordinates $\tan \theta=\left(y_{0}+t x_{0}\right) / x_{0}$ and $\lim _{t \rightarrow \infty} \theta= \pm \pi / 2$.

In the phase plane:

Examples. Page 115 Numbers 9(b) and 10(b).

