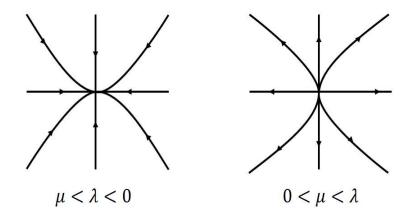
Section 2.3. Critical Points of Some Special Linear Systems

Note. In this section we consider $\vec{x}' = A\vec{x}$ where A is a 2 × 2 constant matrix. We go through several cases based on the eigenvalues of A.

Case 1. Suppose the eigenvalues of A are real, distinct, and of the same sign. Then solutions are of the form

$$\begin{aligned} x(t) &= x_0 e^{\lambda t} \\ y(t) &= y_0 e^{\mu t} \end{aligned}$$

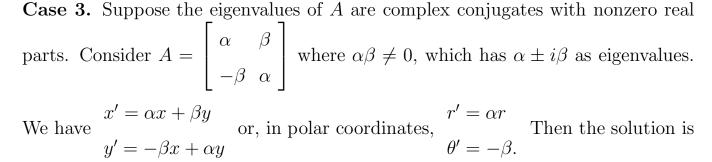
where $\lambda \neq \mu$. In the phase plane the origin is called a *node* and we have:



Case 2. Suppose the eigenvalues of A are real and of opposite signs, say $\lambda < 0 < \mu$. Then solutions are of the form

$$\begin{aligned} x(t) &= x_0 e^{\lambda t} \\ y(t) &= y_0 e^{\mu t}. \end{aligned}$$

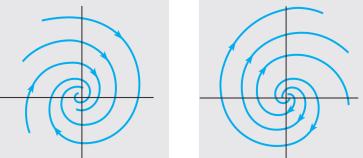
In the phase plane the origin is called a *saddle point* and we have:



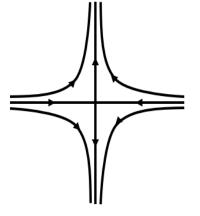
of the form

$$r = r_0 e^{\alpha t}$$
$$\theta = \theta_0 = \beta t.$$

In the phase plane we have for $\alpha < 0$ and $\beta > 0$ that the origin is asymptotically stable (and is called a *spiral point*; left) and for $\alpha > 0$ and $\beta > 0$ the origin is unstable (right):



This image is from Elementary Differential Equations and Boundary Value Prob-



lems, 5th Edition by Richard Diprima and William Boyce, John Wiley & Sons (1991).

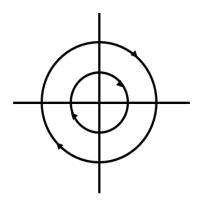
Example. Page 115 Exercise 8(b). Solve
$$\vec{x}' = A\vec{x}$$
 where $A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}$

Case 4. Suppose the eigenvalues of A are purely imaginary. Consider $A = \begin{bmatrix} 0 & \beta \\ -\beta & 0 \end{bmatrix}$ or, in polar coordinates, $\begin{array}{c} r' = 0 \\ \theta' = -\beta \end{array}$ we get

$$r = r_0$$

$$\theta = -\beta t + \theta_0.$$

In the phase plane the origin is stable (and called a *center*):

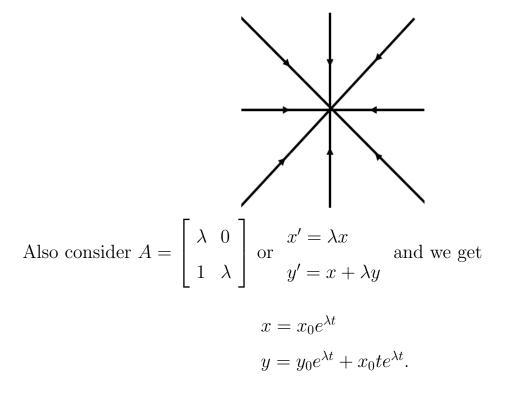


Case 5. Suppose the eigenvalues of A are the same. Consider $A = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}$ or

 $x' = \lambda x$ and we get $y' = \lambda y$

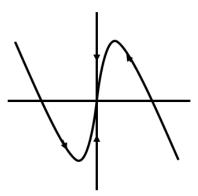
$$x = x_0 e^{\lambda t}$$
$$y = y_0 e^{\lambda t}.$$

We see, in polar coordinates, $r^x = x^2 + y^2 = e^{2\lambda t}(x_0^2 + y_0^2)$ and $\tan \theta = y/x = y_0/x_0$ (a constant). In the phase plane the origin is called a *degenerate node* (trajectories approach the origin at the same rate from any direction, in contrast to Case 1):



If $x_0 \neq 0$, then in polar coordinates $\tan \theta = (y_0 + tx_0)/x_0$ and $\lim_{t\to\infty} \theta = \pm \pi/2$.

In the phase plane:



Examples. Page 115 Numbers 9(b) and 10(b).

Revised: 4/16/2019