Section 2.4. Critical Points of General 2-D Linear Systems

Note. In this section we diagonalize 2×2 matrices and solve 2-D systems.

Note. Let matrix B^{-1} be 2×2, invertible, and define $\left[\begin{array}{l}z \\ w\end{array}\right]=B^{-1}\left[\begin{array}{l}x \\ y\end{array}\right]$ for given $\left[\begin{array}{l}x \\ y\end{array}\right]$. If $\left[\begin{array}{l}x \\ y\end{array}\right]$ is a solution to $\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=A\left[\begin{array}{l}x \\ y\end{array}\right]$, then

$$
\left[\begin{array}{c}
z^{\prime} \\
w^{\prime}
\end{array}\right]=B^{-1}\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=B^{-1} A\left[\begin{array}{l}
x \\
y
\end{array}\right]=B^{-1} A B\left[\begin{array}{l}
z \\
w
\end{array}\right]
$$

and we see $\left[\begin{array}{l}z \\ w\end{array}\right]$ is a solution of $\left[\begin{array}{l}z^{\prime} \\ w^{\prime}\end{array}\right]=T\left[\begin{array}{l}z \\ w\end{array}\right]$ if $T=B^{-1} A B$. Notice that T and A are similar and therefore have the same eigenvalues (matrix T will be one of the six types of matrices discussed in Section 2.3).

Example. (Exercise 2.4.4.) If $D=T^{-1} A T$ is a diagonal matrix, then the columns of T are eigenvectors of T are eigenvectors of A and the nonzero entries of D are eigenvalues of A.

Example. Consider $A=\left[\begin{array}{ll}1 & 4 \\ 5 & 2\end{array}\right]$. Find matrices B and B^{-1} such that $D=$
$B^{-1} A B$ is diagonal. SOLUTION: We have $B=\left[\begin{array}{rr}4 & 1 \\ 5 & -1\end{array}\right], D=\left[\begin{array}{rr}6 & 0 \\ 0 & -3\end{array}\right]$, and
$B^{-1}=-\frac{1}{9}\left[\begin{array}{rr}-1 & -1 \\ -5 & 4\end{array}\right]$.

Example. Solve $\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{ll}1 & 4 \\ 5 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$.

