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Section 2.4. Critical Points of General 2-D Linear Systems

Note. In this section we diagonalize 2 × 2 matrices and solve 2-D systems.

Note. Let matrix B−1 be 2 × 2, invertible, and define
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T and A are similar and therefore have the same eigenvalues (matrix T will be one

of the six types of matrices discussed in Section 2.3).

Example. (Exercise 2.4.4.) If D = T−1AT is a diagonal matrix, then the columns

of T are eigenvectors of T are eigenvectors of A and the nonzero entries of D are

eigenvalues of A.
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Example. Consider A =





1 4

5 2



. Find matrices B and B−1 such that D =

B−1AB is diagonal. SOLUTION: We have B =
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Example. Solve
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