Section 3.2. Preliminaries

Note. We set up a theoretical framework for the study of DEs.

Definition. A continuous function $\varphi(t)$ defined on interval I is a solution on I of the integral equation

$$
y=y_{0}+\int_{t_{0}}^{t} f(s, y) d s
$$

if for every $t \in I, f(t, \varphi(t))$ is defined and

$$
\varphi(t)=y_{o}+\int_{t_{o}}^{t} f(x, \varphi(s)) d s
$$

Theorem 3.2.1. Let $f(t, y)$ be continuous. A function $\varphi(t)$ defined on interval I is a solution to the IVP

$$
\left\{\begin{array}{l}
y^{\prime}=f(t, y) \\
y\left(t_{0}\right)=y_{0}
\end{array}\right.
$$

on I if and only if φ is a continuous solution of the integral equation

$$
y=y_{0}+\int_{t_{0}}^{t} f(s, y) d s
$$

Definition. A function $f(t, y)$ is Lipschitz in variable y in a region $\Omega \subset \mathbb{R}^{2}$ if there exists $K \in \mathbb{R}$ such that if $\left(t, y_{1}\right),\left(t, y_{2}\right) \in \Omega$ then

$$
\left|f\left(t, y_{1}\right)-f\left(t, y_{2}\right)\right| \leq K\left|y_{1}-y_{2}\right| .
$$

Definition. Let M be a set. A function $\rho: M \rightarrow \mathbb{R}^{2}$ is a metric on M if

1. $\rho(x, y) \geq 0$ and $\rho(x, y)=0$ if and only if $x=y$.
2. $\rho(x, y)=\rho(y, x)$.
3. $\rho(x, y) \leq \rho(x, z)+\rho(y, z)$ for all $x, y, z \in M$.

The pair (M, ρ) is a metric space.

Definition. The set of all continuous functions on $[a, b]$ is denoted $C([a, b])$.

Theorem 3.2.A. $C([a, b])$ is a metric space under the metric

$$
\rho(f, g)=\max _{y \in[a, b]}|f(t)-g(t)| .
$$

Definition. A sequence $\left\{x_{n}\right\} \subset M$ is a Cauchy sequence in metric space (M, ρ) if for all $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that if $m, n \geq N$ then $\rho\left(x_{n}, x_{m}\right)<\varepsilon$. A sequence $\left\{x_{n}\right\}$ converges with limit $y \in M$ if for all $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that if $n \geq N$ then $\rho\left(y, x_{n}\right)<\varepsilon$.

Definition. A metric space M is complete if every Cauchy sequence converges.

Note. Convergent sequences are Cauchy by the Triangle Inequality.

Theorem 3.2.2. The space $C([a, b])$ is complete.

Definition. A linear space (over \mathbb{R}) is a set L such that if $f, g \in L$ and $a, b \in \mathbb{R}$ then $a f+b g \in L$. A norm $\|\cdot\|$ on a linear space is a mapping from L to \mathbb{R} such that

1. $\|f\|=0$ if and only if $f=0$,
2. $\|\lambda f\|=|\lambda|\|f\|$ for all $f \in L$ and for all $\lambda \in \mathbb{R}$, and
3. $\|f+g\| \leq\|f\|+\|g\|$ for all $f, g \in L$.

Note. In a normed linear space, we can define a metric as $d(f, g)=\|f-g\|$.

Definition. A complete normed linear space is called a Banach space.

Note. $C([a, b])$ is a Banach space with norm $\|f\|=\max _{t \in[a, b]}|f(t)|$.

Definition. Let $f_{0} \in C([a, b])$ and $\alpha \in \mathbb{R}$. Define the set B of all elements f of $C([a, b])$ such that $\rho\left(f, f_{0}\right) \leq \alpha$.

Lemma 3.2.3. The space B is complete.

