Section 3.2. Preliminaries

Note. We set up a theoretical framework for the study of DEs.

Definition. A continuous function $\varphi(t)$ defined on interval I is a solution on I of the integral equation

$$y = y_0 + \int_{t_0}^t f(s, y) \, ds$$

if for every $t \in I$, $f(t, \varphi(t))$ is defined and

$$\varphi(t) = y_o + \int_{t_o}^t f(x, \varphi(s)) \, ds.$$

Theorem 3.2.1. Let f(t, y) be continuous. A function $\varphi(t)$ defined on interval I is a solution to the IVP

$$\begin{cases} y' = f(t, y) \\ y(t_0) = y_0 \end{cases}$$

on I if and only if φ is a continuous solution of the integral equation

$$y = y_0 + \int_{t_0}^t f(s, y) \, ds.$$

Definition. A function f(t, y) is *Lipschitz* in variable y in a region $\Omega \subset \mathbb{R}^2$ if there exists $K \in \mathbb{R}$ such that if $(t, y_1), (t, y_2) \in \Omega$ then

$$|f(t, y_1) - f(t, y_2)| \le K|y_1 - y_2|.$$

Definition. Let M be a set. A function $\rho: M \to \mathbb{R}^2$ is a *metric* on M if

ρ(x, y) ≥ 0 and ρ(x, y) = 0 if and only if x = y.
ρ(x, y) = ρ(y, x).
ρ(x, y) ≤ ρ(x, z) + ρ(y, z) for all x, y, z ∈ M.

The pair (M, ρ) is a metric space.

Definition. The set of all continuous functions on [a, b] is denoted C([a, b]).

Theorem 3.2.A. C([a, b]) is a metric space under the metric

$$\rho(f,g) = \max_{y \in [a,b]} |f(t) - g(t)|.$$

Definition. A sequence $\{x_n\} \subset M$ is a *Cauchy sequence* in metric space (M, ρ) if for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that if $m, n \geq N$ then $\rho(x_n, x_m) < \varepsilon$. A sequence $\{x_n\}$ converges with limit $y \in M$ if for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that if $n \geq N$ then $\rho(y, x_n) < \varepsilon$.

Definition. A metric space *M* is *complete* if every Cauchy sequence converges.

Note. Convergent sequences are Cauchy by the Triangle Inequality.

Theorem 3.2.2. The space C([a, b]) is complete.

Definition. A *linear space* (over \mathbb{R}) is a set L such that if $f, g \in L$ and $a, b \in \mathbb{R}$ then $af + bg \in L$. A norm $\|\cdot\|$ on a linear space is a mapping from L to \mathbb{R} such that

- **1.** ||f|| = 0 if and only if f = 0,
- **2.** $\|\lambda f\| = |\lambda| \|f\|$ for all $f \in L$ and for all $\lambda \in \mathbb{R}$, and
- **3.** $||f + g|| \le ||f|| + ||g||$ for all $f, g \in L$.

Note. In a normed linear space, we can define a metric as d(f,g) = ||f - g||.

Definition. A complete normed linear space is called a *Banach space*.

Note. C([a, b]) is a Banach space with norm $||f|| = \max_{t \in [a, b]} |f(t)|$.

Definition. Let $f_0 \in C([a, b])$ and $\alpha \in \mathbb{R}$. Define the set *B* of all elements *f* of C([a, b]) such that $\rho(f, f_0) \leq \alpha$.

Lemma 3.2.3. The space *B* is complete.

Revised: 4/15/2019