Section 3.3. The Contraction Mapping Theorem

Note. We give one definition and theorem. The theorem is useful in establishing the existence and uniqueness of solutions to DEs.

Definition. Let $T: M \rightarrow M$ where (M, ρ) is a metric space. T is a contraction if for all $x, y \in M$ we have $\rho(T x, T y) \leq \alpha \rho(x, y)$ where $0 \leq \alpha<1$.

Example. The function $f(x)=\cos x$ is a contraction on $(0, \pi / 2)$.

Theorem 3.3.1. The Contraction Mapping Theorem.

A contraction mapping T defined on a complete metric space has a unique fixed point.

Definition. The set of all continuous functions on $[a, b]$ is denoted $C([a, b])$.

Example. Approximate the fixed point of $f(x)=\cos x$ on $(0, \pi / 2)$. As seen in the proof of Theorem 3.3.1, all we have to do is iterate f by starting at any point of $(0, \pi / 2)$. You can set a calculator in radians mode, input any value in $(0, \pi / 2)$, and repeatedly hit the cosine button and the output will approach the fixed point. The value is approximately 0.73908513 .

