Section 3.4. The Initial Value Problem for One Scalar Differential Equation

Note. We state and prove several theorems concerning the existence of solutions to IVPs.

Theorem 3.4.1. Let $f(x, t)$ be continuous and Lipschitz with Lipschitz constant K on $\Omega = \{(t, y) \mid |t - t_0| \leq a, |y - y_0| \leq b\}$ and let M be a number such that $|f(t, y)| \leq M$ for all $(x, y) \in \Omega$. Choose $0 < \alpha < \min\{1/K, b/M, a\}$. Then there exists a unique solution of

$$\begin{align*}
y' &= f(t, y) \\
y(t_0) &= y_0
\end{align*}$$

for $|t - t_0| \leq \alpha$.

Theorem 3.4.2. Let $f(t, y)$ be continuous and Lipschitz with Lipschitz constant K valid for every t and y (i.e., f is “uniformly Lipschitz”). Then for any $t_0, y_0 \in \mathbb{R}$, there is a solution to

$$\begin{align*}
y' &= f(t, y) \\
y(t_0) &= y_0
\end{align*}$$

and this solution is valid for all t.

Corollary 3.4.3. If \(a(t) \) and \(b(t) \) are continuous in \(\mathbb{R} \), there exists a unique solution \(y(t) \) of
\[
\begin{align*}
y' &= a(t)y + b(t) \\
y(t_0) &= y_0
\end{align*}
\]
valid for all \(t \).

Lemma 3.4.4. Gronwall’s Inequality.
Let \(\varphi(t) \) be a nonnegative function where
\[
\varphi(t) \leq C + K \int_{t_0}^{t} \varphi(s) \, ds, \quad t > t_0
\]
where \(C \) and \(K \) are constants, \(K \geq 0 \) and \(C > 0 \). Then \(\varphi(t) \leq C e^{K(t-t_0)} \) for \(t > t_0 \).

Theorem 3.4.5. Continuous Dependence of IVPs on Initial Conditions.
Define \(T : \mathbb{R} \to C([a,b]) \) be defined as \(Ty_0 = \varphi \) where \(\varphi \) is the solution of
\[
\begin{align*}
y' &= f(t,y) \\
y(t_0) &= y_0
\end{align*}
\]
for given Lipschitz \(f \) with Lipschitz constant \(K \) valid for every \(t \) and \(y \). Then \(T \) is continuous.

Revised: 4/17/2019