Shepley L. Ross Introduction to Ordinary Differential Equations

Chapter 4. Explicit Methods of Solving Higher-Order Linear Differential Equations

- 4.3. The Method of Undetermined Coefficients
- **4.3.1.** Find the general solution of the DE: $y'' 3y' + 2y = 4x^2$.
- **4.3.3.** Find the general solution of the DE: $y'' + 2y' + 5y = 6\sin 2x + 7\cos 2x$.
- **4.3.7.** Find the general solution of the DE: $y'' + 6y' + 5y = 2e^x + 10e^{5x}$.
- **4.3.15.** Find the general solution of the DE: $y''' + 4y'' + y' 6y = -18x^2 + 1$.
- **4.3.23.** Find the general solution of the DE: $y''' 3y'' + 4y = 4e^x 18e^{-x}$. HINT: m = -1 is a zero of the auxiliary equation.
- **4.3.31.** Find the general solution of the DE: $y'' + y = x \sin x$.
- **4.3.35.** Solve the initial value problem: $y'' 4y' + 3y = 9x^2 + 4$, y(0) = 6, y'(0) = 8.
- **4.3.39.** Solve the initial value problem: $y'' + 8y' + 16y = 8e^{-2x}$, y(0) = 2, y'(0) = 0.
- **4.3.41.** Solve the initial value problem: $y'' + 4y' + 13y = 18e^{-2x}$, y(0) = 0, y'(0) = 4.
- **4.3.51.** Consider $y'' 6y' + 8y = x^3 + x + e^{-2x}$. Set up the correct linear combination of functions with undetermined coefficients to use in finding a particular integral y_p by the Method of Undetermined Coefficients.