Shepley L. Ross Introduction to Ordinary Differential Equations

Chapter 4. Explicit Methods of Solving Higher-Order Linear Differential Equations

4.5. The Cauchy-Euler Equation

- **4.5.1.** Find the general solution of $x^2y'' 3xy' + 3y = 0$ where x > 0
- **4.5.5.** Find the general solution of $x^2y'' + xy' + 4y = 0$ where x > 0.
- **4.5.9.** Find the general solution of $9x^2y'' + 3xy' + y = 0$ where x > 0.
- **4.5.13.** Find the general solution of $x^3y''' x^2y'' 6xy' + 18y = 0$ where x > 0. HINT: m = -2 is a zero of the auxiliary equation of the transformed DE.
- **4.5.15.** Find the general solution of $x^2y'' 4xy' + 6y = 4x 6$ where x > 0.
- **4.5.23.** Solve the IVP $x^2y'' 2xy' 10y = 0$, y(1) = 5, y'(1) = 4. Assume x > 0 (notice that the initial conditions are given for x = 1 > 0).
- **4.5.29.** Solve the IVP $x^2y'' 5xy' + 8y = 2x^3$, y(2) = 0, y'(2) = -8. Assume x > 0 (notice that the initial conditions are given for x = 2 > 0).