Shepley L. Ross Introduction to Ordinary Differential Equations

Chapter 5. Applications of Second-Order Linear Differential Equations with Constant Coefficients 5.3. Free, Damped Motion

- **5.3.3.** An 8 lb weight is attached to the lower end of a coil spring suspended from a fixed support. The weight comes to rest in its equilibrium position, thereby stretching the spring 6 in. The weight is then pulled down 9 in. below its equilibrium position and is released at t = 0. The medium offers a resistance in pounds numerically equal to 4x', where x' is the instantaneous velocity in feet per second. Determine the displacement of the weight as a function of time.
- **5.3.5.** A 70 gm mass is attached to the lower end of a coil spring suspended from the ceiling. The mass comes to rest in its equilibrium position, thereby stretching the spring 5 cm. The mass is then pulled down 4 cm below its equilibrium and released at t = 0. A damping mechanism provides a resistance numerically equal to 280x' where x' is the instantaneous velocity in centimeters per second. Find the displacement of the mass as a function of time.
- **5.3.9.** A 4 lb weight is hung upon the lower end of a coil spring hanging vertically from a fixed support. The weight comes to rest in its equilibrium position, thereby stretching the spring 8 in. The weight is then pulled down a certain distance below this equilibrium position and released at t = 0. The medium offers a resistance in pounds numerically equal to ax', where a > 0 and x' is the instantaneous velocity in feet per second. Show that the motion is oscillatory if $a < \sqrt{3}$, critically damped if $a = \sqrt{3}$, and overdamped if $a > \sqrt{3}$.