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Chapter 9. The Laplace Transform
9.1. Definition, Existence, and Basic Properties of the Laplace Transform

9.1.A.1. Use the definition of the Laplace transform to find L{f(t)} for f(t) = t2.

9.1.A.2. Use the definition of the Laplace transform to find L{f(t)} for f(t) = sinh t. Recall:

sinh x = (ex − e−x)/2 and cosh x = (ex + e−x)/2.

9.1.A.3. Use the definition of the Laplace transform to find L{f(t)} for f(t) =

{
5 if t ∈ [0, 2)

0 if t ∈ [2,∞).

9.1.A.7. Use the definition of the Laplace transform to find L{f(t)} for f(t) =


5 if t ∈ [0, 1)

2− t if t ∈ [1, 2)

0 if t ∈ [2,∞).

9.1.B.1. Use Theorem 9.2 to find L{cos2 at}. HINT: From the double angle formula for cosine we

have cos2 θ =
cos(2θ) + 1

2
.

9.1.B.5. If L{t2} = 2/s3, use Theorem 9.3 to find L{t3}.

9.1.B.7. Use Theorem 9.3 and Corollary 9.1.A to find L{f(t)} if f ′′(t)+3f ′(t)+3f(t) = 0, f(0) = 1,

f ′(0) = 2. You may assume that f satisfies the hypothesis of Theorem 9.3 and Corollary 9.1.A.

9.1.B.9. Use Theorem 9.3 and Corollary 9.1.A to find L{f(t)} if f ′′′(t) = f ′(t), f ′′(0) = 2, f ′(0) = 1,

f(0) = 0. You may assume that f satisfies the hypothesis of Theorem 9.3 and Corollary 9.1.A.

9.1.B.13. Use Theorem 9.5, the Translation Property, to find L{eatt2}.

9.1.B.17. Use Theorem 9.6 to find L{t3eat}.


