Shepley L. Ross Introduction to Ordinary Differential Equations

Chapter 9. The Laplace Transform

- 9.1. Definition, Existence, and Basic Properties of the Laplace Transform
- **9.1.A.1.** Use the definition of the Laplace transform to find $\mathcal{L}\{f(t)\}$ for $f(t)=t^2$.
- **9.1.A.2.** Use the definition of the Laplace transform to find $\mathcal{L}\{f(t)\}$ for $f(t) = \sinh t$. Recall: $\sinh x = (e^x e^{-x})/2$ and $\cosh x = (e^x + e^{-x})/2$.
- **9.1.A.3.** Use the definition of the Laplace transform to find $\mathcal{L}{f(t)}$ for $f(t) = \begin{cases} 5 & \text{if } t \in [0,2) \\ 0 & \text{if } t \in [2,\infty). \end{cases}$
- **9.1.A.7.** Use the definition of the Laplace transform to find $\mathcal{L}\{f(t)\}$ for $f(t) = \begin{cases} 5 & \text{if } t \in [0,1) \\ 2-t & \text{if } t \in [1,2) \\ 0 & \text{if } t \in [2,\infty). \end{cases}$
- **9.1.B.1.** Use Theorem 9.2 to find $\mathcal{L}\{\cos^2 at\}$. HINT: From the double angle formula for cosine we have $\cos^2 \theta = \frac{\cos(2\theta) + 1}{2}$.
- **9.1.B.5.** If $\mathcal{L}\{t^2\} = 2/s^3$, use Theorem 9.3 to find $\mathcal{L}\{t_3\}$.
- **9.1.B.7.** Use Theorem 9.3 and Corollary 9.1.A to find $\mathcal{L}\{f(t)\}$ if f''(t)+3f'(t)+3f(t)=0, f(0)=1, f'(0)=2. You may assume that f satisfies the hypothesis of Theorem 9.3 and Corollary 9.1.A.
- **9.1.B.9.** Use Theorem 9.3 and Corollary 9.1.A to find $\mathcal{L}\{f(t)\}$ if f'''(t) = f'(t), f''(0) = 2, f'(0) = 1, f(0) = 0. You may assume that f satisfies the hypothesis of Theorem 9.3 and Corollary 9.1.A.
- **9.1.B.13.** Use Theorem 9.5, the Translation Property, to find $\mathcal{L}\{e^{at}t^2\}$.
- **9.1.B.17.** Use Theorem 9.6 to find $\mathcal{L}\{t^3e^{at}\}$.