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Chapter 1. Normed Vector Spaces
Section 1.2. Vector Spaces—Proofs of Theorems
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Theorem 1.2.1. Hölder’s Inequality

Theorem 1.2.1. Hölder’s Inequality

Theorem 1.2.1. Hölder’s Inequality.
Let p > 1, q > 1, and 1/p + 1/q = 1. For any two sequences of complex
numbers {xn} and {yn},

∞∑
n=1

|xnyn| ≤

( ∞∑
n=1

|xn|p
)1/p ( ∞∑

n=1

|yn|p
)1/p

.

Proof. First, by Problem 1.1.5, x1/p ≤ 1

p
x +

1

q
for x ∈ [0, 1]. Let a and b

be positive real numbers such that ap ≤ bq. Then 0 ≤ ap/bq ≤ 1 and so

ab−q/p ≤ 1

p

ap

bq
+

1

q

with x = ap/bq in problem 1.1.5. Now

1

p
+

1

q
= 1 implies

q

p
+ 1 = q or

−q

p
= 1− q . . .
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Theorem 1.2.1. Hölder’s Inequality

Theorem 1.2.1 (continued 1)

Proof (continued). . . . and so

ab1−q ≤ 1

p

ap

bq
+

1

q
.

Multiplying by bq gives

ab ≤ ap

p
+

bq

q
. (1.2.1)

We can show that (1.2.1) also holds when bq ≤ ap. Therefore (1.2.1)
holds for any a, b ≥ 0. If we take

a =
|xj |

(
∑n

k=1 |xk |p)1/p
and b =

|yj |
(
∑n

k=1 |yk |q)1/q

in (1.2.1) where 1 ≤ j ≤ n we get. . .
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Theorem 1.2.1. Hölder’s Inequality

Theorem 1.2.1 (continued 2)

Proof (continued). . . .

ab =
|xj |

(
∑n

k=1 |xk |p)1/p

|yj |
(
∑n

k=1 |yk |q)1/q
≤ ap

p
+

bq

q

=
1

p

|xj |p∑n
k=1 |xk |p

+
1

q

|yj |q∑n
k=1 |yk |q

.

Summing we have ∑n
j=1 |xj ||yj |

(
∑n

k=1 |xk |p)1/p (
∑n

k=1 |yk |q)1/q
≤ 1

p
+

1

q
= 1.

Cross multiplying and letting n →∞ we get the desired result.
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Theorem 1.2.2. Minkowski’s Inequality

Theorem 1.2.4. Minkowski’s Inequality

Theorem 1.2.2. Minkowski’s Inequality.
Let p ≥ 1. For any two sequences of complex numbers {xn} and {yn} we
have ( ∞∑

n=1

|xn + yn|p
)1/p

≤

( ∞∑
n=1

|xn|p
)1/p

+

( ∞∑
n=1

|yn|p
)1/p

.

Proof. If p = 1, the result holds by the Triangle Inequality for absolute
value. If p > 1, then there exists q such that 1/p + 1/q = 1 and by
Hölder’s Inequality we have

∞∑
k=1

|xn + yn|p =
∞∑

n=1

|xn + yn||xn + yn|p−1

≤
∞∑

n=1

|xn||xn + yn|p−1 +
∞∑

n=1

|yn||x1 + yn|p−1 . . .
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Hölder’s Inequality we have

∞∑
k=1

|xn + yn|p =
∞∑

n=1

|xn + yn||xn + yn|p−1

≤
∞∑

n=1

|xn||xn + yn|p−1 +
∞∑

n=1

|yn||x1 + yn|p−1 . . .

() Advanced Differential Equations April 18, 2019 6 / 8



Theorem 1.2.2. Minkowski’s Inequality

Theorem 1.2.4 (continued)

Proof (continued). . . .

≤

( ∞∑
n=1

|xn|p
)1/p ( ∞∑

n=1

|xn + yn|q(p−1)

)1/q

+

( ∞∑
n=1

|yn|p
)1/p ( ∞∑

n=1

|xn + yn|q(p−1)

)1/q

,

and since q(p − 1) = p,

∞∑
n=1

|xn+yn|p ≤


( ∞∑

n=1

|xn|p
)1/p

+

( ∞∑
n=1

|yn|p
)1/p


( ∞∑

n=1

|xn + yn|p
)1/q

.

Since 1− 1/q = 1/p, Minkowski’s Inequality follows.
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Corollary 1.2.A

Corollary 1.2.A

Corollary 1.2.A. The `p spaces for p ≥ 1 are vector spaces.

Proof. As commented above, we need only show these spaces are closed
under scalar multiplication and vector addition. First, for any
{xn}, {yn} ∈ `p, and λ ∈ C we have that λ{xn} = {λxn} satisfies∑∞

n=1 |λxn|p = |λ|p
∑∞

n=1 |xn|p < ∞. Therefore, λ{xn} ∈ `p.

Second,
{xn + yn} satisfies( ∞∑

n=1

|xn + yn|p
)1/p

≤

( ∞∑
n=1

|xn|p
)1/p

+

( ∞∑
n=1

|yn|p
)1/p

by Minkowski’s Inequality. Therefore {xn + yn} ∈ `p.
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