Advanced Differential Equations

Chapter 1. Normed Vector Spaces Section 1.4. Normed Spaces—Proofs of Theorems

Table of contents

Theorem 1.4.1. Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be norms in a vector space *E*. Then $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent if and only if there exist positive α and β such that

$$\alpha \|x\|_{1} \le \|x\|_{2} \le \beta \|x\|_{1}$$
 (a)

for all $x \in E$.

Proof. First if $x_n \to 0$ under either $\|\cdot\|_1$ or $\|\cdot\|_2$, then hypothesis (a) implies $x_n \to 0$ under $\|\cdot\|_2$ and $\|\cdot\|_1$ respectively.

Theorem 1.4.1. Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be norms in a vector space *E*. Then $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent if and only if there exist positive α and β such that

$$\alpha \|x\|_{1} \le \|x\|_{2} \le \beta \|x\|_{1}$$
 (a)

for all $x \in E$.

Proof. First if $x_n \to 0$ under either $\|\cdot\|_1$ or $\|\cdot\|_2$, then hypothesis (a) implies $x_n \to 0$ under $\|\cdot\|_2$ and $\|\cdot\|_1$ respectively.

Second, assume he norms are equivalent. ASSUME there is no $\alpha > 0$ such that $\alpha \|x\|_1 \le \|x\|_2$ for all $x \in E$. Then for all $n \in \mathbb{N}$ there exists $x_n \in E$ such that $\frac{1}{n} \|x_n\|_1 > \|x_n\|_2$. Let $y_n = \frac{1}{\sqrt{n}} \frac{x_n}{\|x_n\|_2}$. Then $\|y_n\|_2 = 1/\sqrt{n} \to 0$.

Theorem 1.4.1. Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be norms in a vector space *E*. Then $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent if and only if there exist positive α and β such that

$$\alpha \|x\|_{1} \le \|x\|_{2} \le \beta \|x\|_{1}$$
 (a)

for all $x \in E$.

Proof. First if $x_n \to 0$ under either $\|\cdot\|_1$ or $\|\cdot\|_2$, then hypothesis (a) implies $x_n \to 0$ under $\|\cdot\|_2$ and $\|\cdot\|_1$ respectively.

Second, assume he norms are equivalent. ASSUME there is no $\alpha > 0$ such that $\alpha \|x\|_1 \le \|x\|_2$ for all $x \in E$. Then for all $n \in \mathbb{N}$ there exists $x_n \in E$ such that $\frac{1}{n} \|x_n\|_1 > \|x_n\|_2$. Let $y_n = \frac{1}{\sqrt{n}} \frac{x_n}{\|x_n\|_2}$. Then $\|y_n\|_2 = 1/\sqrt{n} \to 0$. However, $\|y\|_1 > n\|y_n\|_2 = \sqrt{n}$. But then $y_n \to 0$ under $\|\cdot\|_2$ and $\|y_n\|_1 \to \infty$, CONTRADICTING the assumed equivalence of $\|\cdot\|_1$ and $\|\cdot\|_2$. Therefore such an α exists. Similarly, the required β exists and hence $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent.

Theorem 1.4.1. Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be norms in a vector space *E*. Then $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent if and only if there exist positive α and β such that

$$\alpha \|x\|_{1} \le \|x\|_{2} \le \beta \|x\|_{1}$$
 (a)

for all $x \in E$.

Proof. First if $x_n \to 0$ under either $\|\cdot\|_1$ or $\|\cdot\|_2$, then hypothesis (a) implies $x_n \to 0$ under $\|\cdot\|_2$ and $\|\cdot\|_1$ respectively.

Second, assume he norms are equivalent. ASSUME there is no $\alpha > 0$ such that $\alpha \|x\|_1 \le \|x\|_2$ for all $x \in E$. Then for all $n \in \mathbb{N}$ there exists $x_n \in E$ such that $\frac{1}{n} \|x_n\|_1 > \|x_n\|_2$. Let $y_n = \frac{1}{\sqrt{n}} \frac{x_n}{\|x_n\|_2}$. Then $\|y_n\|_2 = 1/\sqrt{n} \to 0$. However, $\|y\|_1 > n\|y_n\|_2 = \sqrt{n}$. But then $y_n \to 0$ under $\|\cdot\|_2$ and $\|y_n\|_1 \to \infty$, CONTRADICTING the assumed equivalence of $\|\cdot\|_1$ and $\|\cdot\|_2$. Therefore such an α exists. Similarly, the required β exists and hence $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent.

Theorem 1.4.6. Compact sets are closed and bounded (in general).

Proof. Let *S* be a compact subset of *E*. Suppose $\{x_n\} \subset S$ and $x_n \to x$. Then by hypothesis there exists $\{x_{p_n}\} \subset \{x_n\}$ which converges to some $y \in S$. But $x_n \to x$, so x = y and $x_n \to x \in S$. Therefore *S* is closed by Theorem 1.4.3.

Theorem 1.4.6. Compact sets are closed and bounded (in general).

Proof. Let *S* be a compact subset of *E*. Suppose $\{x_n\} \subset S$ and $x_n \to x$. Then by hypothesis there exists $\{x_{p_n}\} \subset \{x_n\}$ which converges to some $y \in S$. But $x_n \to x$, so x = y and $x_n \to x \in S$. Therefore *S* is closed by Theorem 1.4.3.

Next, ASSUME *S* is not bounded. Then there exists a sequence $\{x_n\} \subset S$ such that $||x_n|| \ge n$ for all $n \in \mathbb{N}$. Then $\{x_n\}$ contains no convergent subsequence and so *S* is not compact. Therefore if *S* is compact, then *S* is bounded.

Theorem 1.4.6. Compact sets are closed and bounded (in general).

Proof. Let *S* be a compact subset of *E*. Suppose $\{x_n\} \subset S$ and $x_n \to x$. Then by hypothesis there exists $\{x_{p_n}\} \subset \{x_n\}$ which converges to some $y \in S$. But $x_n \to x$, so x = y and $x_n \to x \in S$. Therefore *S* is closed by Theorem 1.4.3.

Next, ASSUME *S* is not bounded. Then there exists a sequence $\{x_n\} \subset S$ such that $||x_n|| \ge n$ for all $n \in \mathbb{N}$. Then $\{x_n\}$ contains no convergent subsequence and so *S* is not compact. Therefore if *S* is compact, then *S* is bounded.