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Chapter 1. Normed Vector Spaces
Section 1.4. Normed Spaces—Proofs of Theorems
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Theorem 1.4.1

Theorem 1.4.1

Theorem 1.4.1. Let ‖ · ‖1 and ‖ · ‖2 be norms in a vector space E . Then
‖ · ‖1 and ‖ · ‖2 are equivalent if and only if there exist positive α and β
such that

α‖x‖1 ≤ ‖x‖2 ≤ β‖x‖1 (a)

for all x ∈ E .

Proof. First if xn → 0 under either ‖ · ‖1 or ‖ · ‖2, then hypothesis (a)
implies xn → 0 under ‖ · ‖2 and ‖ · ‖1 respectively.

Second, assume he norms are equivalent. ASSUME there is no α > 0 such
that α‖x‖1 ≤ ‖x‖2 for all x ∈ E . Then for all n ∈ N there exists xn ∈ E

such that
1

n
‖xn‖1 > ‖xn‖2. Let yn =

1√
n

xn

‖xn‖2
. Then

‖yn‖2 = 1/
√

n → 0. However, ‖y‖1 > n‖yn‖2 =
√

n. But then yn → 0
under ‖ · ‖2 and ‖yn‖1 →∞, CONTRADICTING the assumed equivalence
of ‖ · ‖1 and ‖ · ‖2. Therefore such an α exists. Similarly, the required β
exists and hence ‖ · ‖1 and ‖ · ‖2 are equivalent.
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Theorem 1.4.6

Theorem 1.4.6

Theorem 1.4.6. Compact sets are closed and bounded (in general).

Proof. Let S be a compact subset of E . Suppose {xn} ⊂ S and xn → x .
Then by hypothesis there exists {xpn} ⊂ {xn} which converges to some
y ∈ S . But xn → x , so x = y and xn → x ∈ S . Therefore S is closed by
Theorem 1.4.3.

Next, ASSUME S is not bounded. Then there exists a sequence {xn} ⊂ S
such that ‖xn‖ ≥ n for all n ∈ N. Then {xn} contains no convergent
subsequence and so S is not compact. Therefore if S is compact, then S is
bounded.
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