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Chapter 1. Normed Vector Spaces
Section 1.5. Banach Spaces—Proofs of Theorems
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Theorem 1.5.A/Example 1.5.1

Theorem 1.5.A/Example 1.5.1. The space /2 is a Banach space.
Proof. Let a, = {1, @n2,...} for n € N be a Cauchy sequence in /2.
We need to show a, converges in 2.

Given £ > 0, there exists M € N such that for all m,n > M

o0
lan — am|® = lomk — an, k> <e. (1.5.1)
Hence |am« — (x,,_k|2 < e for k € N. Therefore for any fixed k*, {apk+} is
a Cauchy sequence in C and so is convergent. Say
liMp— oo Qp ke = i« = tx and denote a = {ay+, az-,...}. We will show
ac?and a, — a.

Now (1.5.1) implies (see Exercise 1.15)

ko ko
. mk = Qnk|? < € for all
(lomkl — lankl)® < |mk = nk|> < € for all k.
k=1 k=1
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Corollary 1.5.A

Corollary 1.5.A. Every convergent sequence is Cauchy.

Proof. Let {x,} — x. Then for all £ > 0 there exists M € N such that if
n > M then ||x, — x|| < &/2. Let m,n > N. Then by the Triangle
Inequality

)+ (x=x)l <= x| + xm—nll <=+ ==¢

1% = xml| = 1|(xn — 7" 2
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Theorem 1.5.A/Example 1.5.1 (continued 1)

Proof (continued). Letting m — oo yields

Z('Q’k| lankl)? <e. (15.2)

Now with kg — oo in (1.5.2) we get

Z(|ﬂk| |anil)® <e. (1.5.3)

Since 3%, |ank|? < oo we have by Minkowski's Inequality

o0 o0
lall = [ D lawl? = | D (o] = lanil + |onkl)?
k=1 k=1

o0 o0
< D (o] = lansl)? + | D lankl? < oo
k=1 k=1
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5.A/Example 1.5.1

Theorem 1.5.A/Example 1.5.1 (continued 2)

Theorem 1.5.A/Example 1.5.1. The space £2 is a Banach space.
Proof (continued). Therefore a € /2.

Next, from (1.5.3), since ¢ > 0 is arbitrary,

o0

lim [ (lok| = lankl)? =0,
n=—00
k=1
that is lim, . ||a — an|/| = 0 and so lim,_. a, = a. O
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Theorem 1.5.2 (continued)

Theorem 1.5.2. A normed space is complete if and only if every
absolutely convergent series converges.

Proof (continued). Let {x,} be a Cauchy sequence in E. Then for all

k € N there exists px € N such that for all m,n > p, we have

| Xm — mxall < 27K (notice that without loss of generality, {p,} is strictly
increasing). The series Y~ 1 (Xp,,, — Xp,) is absolutely convergent and so
is (under our assumption) convergent. So

Xp, = Xpy + (Xpy — Xp;) + - (Xp, — Xp,_,) converges to, say, x € E.
Therefore ||x, = x|| < ||xa — Xp,|| + ||Xp, — x|| — 0 since {x,} is Cauchy.
That is, {x,} is convergent and so E is complete. O
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Theorem 1.5.2

Theorem 1.5.2. A normed space is complete if and only if every
absolutely convergent series converges.

Proof. First, let E be a Banach space (and therefore complete). Let x, be
a sequence in E where Y 07 ||x,|| < oo (i.e., x, is absolutely convergent).
Define s, = >} _; xx. We will show that s, is Cauchy and therefore the
series 3 021 x — n is convergent. Let ¢ > 0 and let k € N such that

> ki1 IXnll < e. The for all m > n > k,

o0

lIsm — Sall = [[Xn+1 + Xng2 + -+ - + Xml|| < Z x|l < e.
r=n+1

That is, s, is Cauchy and so > "7 x, converges.

Second, suppose that E is a normed vector space in which absolutely
convergent series are convergent. We will show E is complete.
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