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Corollary 1.5.A

Corollary 1.5.A

Corollary 1.5.A. Every convergent sequence is Cauchy.

Proof. Let {xn} → x . Then for all ε > 0 there exists M ∈ N such that if
n > M then ‖xn − x‖ < ε/2. Let m, n > N. Then by the Triangle
Inequality

‖xn − xm‖ = ‖(xn − x) + (x − xn)‖ ≤ ‖xn − x‖+ ‖xm − n‖ <
ε

2
+

ε

2
= ε.
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Theorem 1.5.A/Example 1.5.1

Theorem 1.5.A/Example 1.5.1

Theorem 1.5.A/Example 1.5.1. The space `2 is a Banach space.

Proof. Let an = {αn,1, αn,2, . . .} for n ∈ N be a Cauchy sequence in `2.
We need to show an converges in `2.

Given ε > 0, there exists M ∈ N such that for all m, n > M

‖an − am‖2 =
∞∑

k=1

|αm,k − αn, k|2 < ε. (1.5.1)

Hence |αm,k − αn,k |2 < ε for k ∈ N. Therefore for any fixed k∗, {αn,k∗} is
a Cauchy sequence in C and so is convergent. Say
limn→∞ αn,k∗ = αk∗ = αk and denote a = {α1∗ , α2∗ , . . .}. We will show
a ∈ `2 and an → a.

Now (1.5.1) implies (see Exercise 1.15)

k0∑
k=1

(|αm,k | − |αn,k |)2 ≤
k0∑

k=1

|αm,k = αn,k |2 < ε for all k0.
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Theorem 1.5.A/Example 1.5.1

Theorem 1.5.A/Example 1.5.1 (continued 1)

Proof (continued). Letting m →∞ yields

k0∑
k=1

(|αk | − |αn,k |)2 ≤ ε. (1.5.2)

Now with k0 →∞ in (1.5.2) we get
∞∑

k=1

(|αk | − |αn,k |)2 ≤ ε. (1.5.3)

Since
∑∞

k=1 |αn,k |2 < ∞ we have by Minkowski’s Inequality

‖a‖ =

√√√√ ∞∑
k=1

|αk |2 =

√√√√ ∞∑
k=1

(|αk | − |αn,k |+ |αn,k |)2

≤

√√√√ ∞∑
k=1

(|αk | − |αn,k |)2 +

√√√√ ∞∑
k=1

|αn,k |2 < ∞.
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Theorem 1.5.A/Example 1.5.1

Theorem 1.5.A/Example 1.5.1 (continued 2)

Theorem 1.5.A/Example 1.5.1. The space `2 is a Banach space.

Proof (continued). Therefore a ∈ `2.

Next, from (1.5.3), since ε > 0 is arbitrary,

lim
n→∞

√√√√ ∞∑
k=1

(|αk | − |αn,k |)2 = 0,

that is limn→∞ ‖a− an‖ = 0 and so limn→∞ an = a.
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Theorem 1.5.2

Theorem 1.5.2

Theorem 1.5.2. A normed space is complete if and only if every
absolutely convergent series converges.

Proof. First, let E be a Banach space (and therefore complete). Let xn be
a sequence in E where

∑∞
n=1 ‖xn‖ < ∞ (i.e., xn is absolutely convergent).

Define sn =
∑n

k=1 xk . We will show that sn is Cauchy and therefore the
series

∑∞
n=1 x − n is convergent.

Let ε > 0 and let k ∈ N such that∑∞
n=k+1 ‖xn‖ < ε. The for all m > n > k,

‖sm − sn‖ = ‖xn+1 + xn+2 + · · ·+ xm‖ ≤
∞∑

r=n+1

‖xr‖ < ε.

That is, sn is Cauchy and so
∑∞

n=1 xn converges.

Second, suppose that E is a normed vector space in which absolutely
convergent series are convergent. We will show E is complete.
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Theorem 1.5.2

Theorem 1.5.2 (continued)

Theorem 1.5.2. A normed space is complete if and only if every
absolutely convergent series converges.

Proof (continued). Let {xn} be a Cauchy sequence in E . Then for all
k ∈ N there exists pk ∈ N such that for all m, n ≥ pk we have
‖xm − rxn‖ < 2−k (notice that without loss of generality, {pn} is strictly
increasing). The series

∑∞
k=1(xpk+1

− xpk
) is absolutely convergent and so

is (under our assumption) convergent.

So
xpk

= xp1 + (xp2 − xp1) + · · · (xpk
− xpk−1

) converges to, say, x ∈ E .
Therefore ‖xn = x‖ ≤ ‖xn − xpn‖+ ‖xpn − x‖ → 0 since {xn} is Cauchy.
That is, {xn} is convergent and so E is complete.
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Theorem 1.5.2 (continued)
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