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Theorem 1.6.3

Theorem 1.6.3. A linear mapping is continuous if and only if it is
bounded.

Proof. First, suppose L is bounded and let x, — 0. Then
|L(xn)|| < K]||xn|| — 0. Therefore L is continuous at 0 € E;, and by
Theorem 1.6.2, L is continuous.

Second, suppose L is NOT bounded. Then for all n € N there exists
Xn € Eq such that ||[L(x,)|| > nl[xa||. Define y, = x,/(n||xx||) for n € N.
Then y, — 0, but

IL(yn)l| = HL (x|r:nll) H -

Therefore L is not continuous at 0, and by Theorem 1.6.2 is NOT
continuous.

L(xn)

n||x||

>
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Theorem 1.6.2

Theorem 1.6.2. A linear mapping L : E; — E; is continuous if and only if
it is continuous at a point.

Proof. Of course if L is continuous, it is continuous at a point. Now
suppose f is continuous at a point. Let x € E and let {x,} be a sequence
with x, — x. Then the sequence {x, — x + xp} converges to xp and

I1L(xn) = LX) || = [[L(xa — x + x0) — L(x0)[| — O

and so L is continuous at x. O
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Theorem 1.6.4

Theorem 1.6.4. If E; and E> are normed spaces then B(Eq, E) is a
normed space with norm as given above.

Proof. “Clearly” the first two properties of a norm are satisfied. We need
to demonstrate the Triangle Inequality. Let L3, Ly € B(E;, E;). Then for
all x € E; such that ||x|| = 1 we have

[L2(x) = L2(x) ]| < [L ()] + I L2(x)]]
(by the Triangle Inequality in E;). So
[1L1(x) + La(x)]| < sup [[Li(x)[| + sup |[[La(x)|| = [[Lall + [[L2]l-

[Ix]l=1 lIx[l=1
Therefore
L+ La2|| = il [1L1(x) + La(x)]| < [|Lafl + [ L2]]-
x||=1
U
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Theorem 1.6.5

Theorem 1.6.5. If £; is a normed space and E; is a Banach space, then
B(E1, Ez) is a Banach space.

Proof. We need to show completeness. Let {L,} be a Cauchy sequence in
B(E1, Ez) and let x € Ey. Then ||Lm(x) — La(X)|| < ||Lm — Lal| ||x]| — 0 as
m,n — oo. Therefore {L,(x)} C E> is a Cauchy sequence and so

La(x) — y € E>. Define a mapping L : E; — E such that for this x € E,
L(x) =y = limy_ Ln(x).

Since each L, is linear, L is linear. Since Cauchy sequences are bounded,
we have

1LG = | im0} = fim_ [1Ea(e) 1 < (sp l1Lal) ] < o

So L is bounded and L € B(E;, E;). We need to show (in the functional
norm) ||L, — L|| — O.
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Theorem 1.6.5 (continued)

Theorem 1.6.5. If E1 is a normed space and E; is a Banach space, then
B(E;, E>) is a Banach space.

Proof (continued). Let £ > 0 and let k € R such that for all m,n > k
we have |[L, — L,|| <e. If ||x]| =1 and m,n > k then

|Lm(x) — La(x)|| < ||Lm — Lm|| < . With n — oo, we see

|Lm(x) — L(x)|| <& for m > k and x such that ||x|| = 1. Therefore
{Ly(x)} — L(x). O]
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