
Advanced Differential Equations

April 20, 2019

Chapter 1. Normed Vector Spaces
Section 1.6. Linear Mappings—Proofs of Theorems
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Theorem 1.6.2

Theorem 1.6.2

Theorem 1.6.2. A linear mapping L : E1 → E2 is continuous if and only if
it is continuous at a point.

Proof. Of course if L is continuous, it is continuous at a point. Now
suppose f is continuous at a point. Let x ∈ E and let {xn} be a sequence
with xn → x . Then the sequence {xn − x + x0} converges to x0 and

‖L(xn)− L(x)‖ = ‖L(xn − x + x0)− L(x0)‖ → 0

and so L is continuous at x .

() Advanced Differential Equations April 20, 2019 3 / 6



Theorem 1.6.2

Theorem 1.6.2

Theorem 1.6.2. A linear mapping L : E1 → E2 is continuous if and only if
it is continuous at a point.

Proof. Of course if L is continuous, it is continuous at a point. Now
suppose f is continuous at a point. Let x ∈ E and let {xn} be a sequence
with xn → x . Then the sequence {xn − x + x0} converges to x0 and

‖L(xn)− L(x)‖ = ‖L(xn − x + x0)− L(x0)‖ → 0

and so L is continuous at x .

() Advanced Differential Equations April 20, 2019 3 / 6



Theorem 1.6.3

Theorem 1.6.3

Theorem 1.6.3. A linear mapping is continuous if and only if it is
bounded.

Proof. First, suppose L is bounded and let xn → 0. Then
‖L(xn)‖ ≤ K‖xn‖ → 0. Therefore L is continuous at 0 ∈ E1, and by
Theorem 1.6.2, L is continuous.

Second, suppose L is NOT bounded. Then for all n ∈ N there exists
xn ∈ E1 such that ‖L(xn)‖ > n‖xn‖. Define yn = xn/(n‖xn‖) for n ∈ N.
Then yn → 0, but

‖L(yn)‖ =

∥∥∥∥L

(
xn

x‖xn‖

)∥∥∥∥ =

∥∥∥∥ L(xn)

n‖xn‖

∥∥∥∥ > 1.

Therefore L is not continuous at 0, and by Theorem 1.6.2 is NOT
continuous.
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Theorem 1.6.4

Theorem 1.6.4

Theorem 1.6.4. If E1 and E2 are normed spaces then B(E1,E2) is a
normed space with norm as given above.

Proof. “Clearly” the first two properties of a norm are satisfied. We need
to demonstrate the Triangle Inequality. Let L1, L2 ∈ B(E1,E2). Then for
all x ∈ E1 such that ‖x‖ = 1 we have

‖L1(x)− L2(x)‖ ≤ ‖L1(x)‖+ ‖L2(x)‖

(by the Triangle Inequality in E2).

So

‖L1(x) + L2(x)‖ ≤ sup
‖x‖=1

‖L1(x)‖+ sup
‖x‖=1

‖L2(x)‖ = ‖L1‖+ ‖L2‖.

Therefore

‖L1 + L2‖ = sup
‖x‖=1

‖L1(x) + L2(x)‖ ≤ ‖L1‖+ ‖L2‖.
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Theorem 1.6.5

Theorem 1.6.5

Theorem 1.6.5. If E1 is a normed space and E2 is a Banach space, then
B(E1,E2) is a Banach space.

Proof. We need to show completeness. Let {Ln} be a Cauchy sequence in
B(E1,E2) and let x ∈ E1. Then ‖Lm(x)− Ln(x)‖ ≤ ‖Lm − Ln‖ ‖x‖ → 0 as
m, n →∞. Therefore {Ln(x)} ⊂ E2 is a Cauchy sequence and so
Ln(x) → y ∈ E2. Define a mapping L : E1 → E2 such that for this x ∈ E1,
L(x) = y = limn→∞ Ln(x).

Since each Ln is linear, L is linear. Since Cauchy sequences are bounded,
we have

‖L(x)‖ =
∥∥∥ lim

n→∞
Ln(x)

∥∥∥ = lim
n→∞

‖Ln(x)‖ ≤ (sup
n∈N

‖Ln‖)‖x‖ < ∞.

So L is bounded and L ∈ B(E1,E2). We need to show (in the functional
norm) ‖Ln − L‖ → 0.
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Theorem 1.6.5

Theorem 1.6.5 (continued)

Theorem 1.6.5. If E1 is a normed space and E2 is a Banach space, then
B(E1,E2) is a Banach space.

Proof (continued). Let ε > 0 and let k ∈ R such that for all m, n ≥ k
we have ‖Lm − Ln‖ < ε. If ‖x‖ = 1 and m, n ≥ k then
‖Lm(x)− Ln(x)‖ ≤ ‖Lm − Lm‖ < ε. With n →∞, we see
‖Lm(x)− L(x)‖ ≤ ε for m > k and x such that ‖x‖ = 1. Therefore
{Lm(x)} → L(x).
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