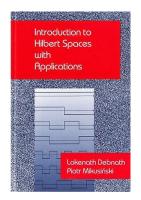
## Advanced Differential Equations

#### **Chapter 1. Normed Vector Spaces** Section 1.6. Linear Mappings—Proofs of Theorems











# **Theorem 1.6.2.** A linear mapping $L: E_1 \rightarrow E_2$ is continuous if and only if it is continuous at a point.

**Proof.** Of course if *L* is continuous, it is continuous at a point. Now suppose *f* is continuous at a point. Let  $x \in E$  and let  $\{x_n\}$  be a sequence with  $x_n \to x$ . Then the sequence  $\{x_n - x + x_0\}$  converges to  $x_0$  and

$$||L(x_n) - L(x)|| = ||L(x_n - x + x_0) - L(x_0)|| \to 0$$

and so *L* is continuous at *x*.

**Theorem 1.6.2.** A linear mapping  $L : E_1 \to E_2$  is continuous if and only if it is continuous at a point.

**Proof.** Of course if *L* is continuous, it is continuous at a point. Now suppose *f* is continuous at a point. Let  $x \in E$  and let  $\{x_n\}$  be a sequence with  $x_n \to x$ . Then the sequence  $\{x_n - x + x_0\}$  converges to  $x_0$  and

$$||L(x_n) - L(x)|| = ||L(x_n - x + x_0) - L(x_0)|| \to 0$$

and so L is continuous at x.

**Theorem 1.6.3.** A linear mapping is continuous if and only if it is bounded.

**Proof.** First, suppose *L* is bounded and let  $x_n \to 0$ . Then  $||L(x_n)|| \le K ||x_n|| \to 0$ . Therefore *L* is continuous at  $0 \in E_1$ , and by Theorem 1.6.2, *L* is continuous.

**Theorem 1.6.3.** A linear mapping is continuous if and only if it is bounded.

**Proof.** First, suppose *L* is bounded and let  $x_n \to 0$ . Then  $||L(x_n)|| \le K ||x_n|| \to 0$ . Therefore *L* is continuous at  $0 \in E_1$ , and by Theorem 1.6.2, *L* is continuous.

Second, suppose *L* is NOT bounded. Then for all  $n \in \mathbb{N}$  there exists  $x_n \in E_1$  such that  $||L(x_n)|| > n||x_n||$ . Define  $y_n = x_n/(n||x_n||)$  for  $n \in \mathbb{N}$ . Then  $y_n \to 0$ , but

$$||L(y_n)|| = \left\|L\left(\frac{x_n}{x||x_n||}\right)\right\| = \left\|\frac{L(x_n)}{n||x_n||}\right\| > 1.$$

Therefore L is not continuous at 0, and by Theorem 1.6.2 is NOT continuous.

**Theorem 1.6.3.** A linear mapping is continuous if and only if it is bounded.

**Proof.** First, suppose *L* is bounded and let  $x_n \to 0$ . Then  $||L(x_n)|| \le K ||x_n|| \to 0$ . Therefore *L* is continuous at  $0 \in E_1$ , and by Theorem 1.6.2, *L* is continuous.

Second, suppose *L* is NOT bounded. Then for all  $n \in \mathbb{N}$  there exists  $x_n \in E_1$  such that  $||L(x_n)|| > n||x_n||$ . Define  $y_n = x_n/(n||x_n||)$  for  $n \in \mathbb{N}$ . Then  $y_n \to 0$ , but

$$\|L(y_n)\| = \left\|L\left(\frac{x_n}{x\|x_n\|}\right)\right\| = \left\|\frac{L(x_n)}{n\|x_n\|}\right\| > 1.$$

Therefore L is not continuous at 0, and by Theorem 1.6.2 is NOT continuous.

**Theorem 1.6.4.** If  $E_1$  and  $E_2$  are normed spaces then  $\mathcal{B}(E_1, E_2)$  is a normed space with norm as given above.

**Proof.** "Clearly" the first two properties of a norm are satisfied. We need to demonstrate the Triangle Inequality. Let  $L_1, L_2 \in \mathcal{B}(E_1, E_2)$ . Then for all  $x \in E_1$  such that ||x|| = 1 we have

$$||L_1(x) - L_2(x)|| \le ||L_1(x)|| + ||L_2(x)||$$

(by the Triangle Inequality in  $E_2$ ).

**Theorem 1.6.4.** If  $E_1$  and  $E_2$  are normed spaces then  $\mathcal{B}(E_1, E_2)$  is a normed space with norm as given above.

**Proof.** "Clearly" the first two properties of a norm are satisfied. We need to demonstrate the Triangle Inequality. Let  $L_1, L_2 \in \mathcal{B}(E_1, E_2)$ . Then for all  $x \in E_1$  such that ||x|| = 1 we have

$$\|L_1(x) - L_2(x)\| \le \|L_1(x)\| + \|L_2(x)\|$$

(by the Triangle Inequality in  $E_2$ ). So

 $\|L_1(x) + L_2(x)\| \le \sup_{\|x\|=1} \|L_1(x)\| + \sup_{\|x\|=1} \|L_2(x)\| = \|L_1\| + \|L_2\|.$ 

Therefore

$$||L_1 + L_2|| = \sup_{||x||=1} ||L_1(x) + L_2(x)|| \le ||L_1|| + ||L_2||.$$

**Theorem 1.6.4.** If  $E_1$  and  $E_2$  are normed spaces then  $\mathcal{B}(E_1, E_2)$  is a normed space with norm as given above.

**Proof.** "Clearly" the first two properties of a norm are satisfied. We need to demonstrate the Triangle Inequality. Let  $L_1, L_2 \in \mathcal{B}(E_1, E_2)$ . Then for all  $x \in E_1$  such that ||x|| = 1 we have

$$\|L_1(x) - L_2(x)\| \le \|L_1(x)\| + \|L_2(x)\|$$

(by the Triangle Inequality in  $E_2$ ). So

$$\|L_1(x) + L_2(x)\| \le \sup_{\|x\|=1} \|L_1(x)\| + \sup_{\|x\|=1} \|L_2(x)\| = \|L_1\| + \|L_2\|.$$

Therefore

$$||L_1 + L_2|| = \sup_{||x||=1} ||L_1(x) + L_2(x)|| \le ||L_1|| + ||L_2||.$$

**Theorem 1.6.5.** If  $E_1$  is a normed space and  $E_2$  is a Banach space, then  $\mathcal{B}(E_1, E_2)$  is a Banach space.

**Proof.** We need to show completeness. Let  $\{L_n\}$  be a Cauchy sequence in  $\mathcal{B}(E_1, E_2)$  and let  $x \in E_1$ . Then  $||L_m(x) - L_n(x)|| \le ||L_m - L_n|| ||x|| \to 0$  as  $m, n \to \infty$ . Therefore  $\{L_n(x)\} \subset E_2$  is a Cauchy sequence and so  $L_n(x) \to y \in E_2$ . Define a mapping  $L : E_1 \to E_2$  such that for this  $x \in E_1$ ,  $L(x) = y = \lim_{n \to \infty} L_n(x)$ .

**Theorem 1.6.5.** If  $E_1$  is a normed space and  $E_2$  is a Banach space, then  $\mathcal{B}(E_1, E_2)$  is a Banach space.

**Proof.** We need to show completeness. Let  $\{L_n\}$  be a Cauchy sequence in  $\mathcal{B}(E_1, E_2)$  and let  $x \in E_1$ . Then  $||L_m(x) - L_n(x)|| \le ||L_m - L_n|| ||x|| \to 0$  as  $m, n \to \infty$ . Therefore  $\{L_n(x)\} \subset E_2$  is a Cauchy sequence and so  $L_n(x) \to y \in E_2$ . Define a mapping  $L : E_1 \to E_2$  such that for this  $x \in E_1$ ,  $L(x) = y = \lim_{n \to \infty} L_n(x)$ .

Since each  $L_n$  is linear, L is linear. Since Cauchy sequences are bounded, we have

$$\|L(x)\| = \left\|\lim_{n\to\infty} L_n(x)\right\| = \lim_{n\to\infty} \|L_n(x)\| \le (\sup_{n\in\mathbb{N}} \|L_n\|)\|x\| < \infty.$$

So *L* is bounded and  $L \in \mathcal{B}(E_1, E_2)$ . We need to show (in the functional norm)  $||L_n - L|| \to 0$ .

**Theorem 1.6.5.** If  $E_1$  is a normed space and  $E_2$  is a Banach space, then  $\mathcal{B}(E_1, E_2)$  is a Banach space.

**Proof.** We need to show completeness. Let  $\{L_n\}$  be a Cauchy sequence in  $\mathcal{B}(E_1, E_2)$  and let  $x \in E_1$ . Then  $||L_m(x) - L_n(x)|| \le ||L_m - L_n|| ||x|| \to 0$  as  $m, n \to \infty$ . Therefore  $\{L_n(x)\} \subset E_2$  is a Cauchy sequence and so  $L_n(x) \to y \in E_2$ . Define a mapping  $L : E_1 \to E_2$  such that for this  $x \in E_1$ ,  $L(x) = y = \lim_{n \to \infty} L_n(x)$ .

Since each  $L_n$  is linear, L is linear. Since Cauchy sequences are bounded, we have

$$\|L(x)\| = \left\|\lim_{n\to\infty} L_n(x)\right\| = \lim_{n\to\infty} \|L_n(x)\| \le (\sup_{n\in\mathbb{N}} \|L_n\|)\|x\| < \infty.$$

So *L* is bounded and  $L \in \mathcal{B}(E_1, E_2)$ . We need to show (in the functional norm)  $||L_n - L|| \to 0$ .

# Theorem 1.6.5 (continued)

**Theorem 1.6.5.** If  $E_1$  is a normed space and  $E_2$  is a Banach space, then  $\mathcal{B}(E_1, E_2)$  is a Banach space.

**Proof (continued).** Let  $\varepsilon > 0$  and let  $k \in \mathbb{R}$  such that for all  $m, n \ge k$  we have  $||L_m - L_n|| < \varepsilon$ . If ||x|| = 1 and  $m, n \ge k$  then  $||L_m(x) - L_n(x)|| \le ||L_m - L_m|| < \varepsilon$ . With  $n \to \infty$ , we see  $||L_m(x) - L(x)|| \le \varepsilon$  for m > k and x such that ||x|| = 1. Therefore  $\{L_m(x)\} \to L(x)$ .