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Theorem 3.11.1. Riesz Representation Theorem.
Let f be a bounded linear functional on a Hilbert space H. There exists
exactly one x0 ∈ H such that f (x) = (x , x0) for all x ∈ H. Also
‖f ‖ = ‖x0‖.

Proof. If f (x) = 0 for all x ∈ H, then take x0 = 0. So without loss of
generality f (z) 6= 0 for some ∈ H. Let F = {x ∈ H | f (x) = 0}. Since f is
linear and bounded, it is continuous and so F is a (topologically) closed
subspace of H.

By Theorem 3.10.4, there exists z0 ∈ F and z1 ∈ F⊥ then
z1 6= 0 and f (z1) 6= 0 since z1 ∈ F⊥. So for all x ∈ H,
x − f (x)z1/f (z1) ∈ F since

f

(
x − f (x)z1

f (z1)

)
= f (x)− f (x)f (z1)

f (z1)
= 0.

And hence (x − f (x)z1/f (z1), z1) = 0 since z1 ∈ F⊥.
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Theorem 3.11.1. Riesz Representation Theorem.
Let f be a bounded linear functional on a Hilbert space H. There exists
exactly one x0 ∈ H such that f (x) = (x , x0) for all x ∈ H. Also
‖f ‖ = ‖x0‖.

Proof (continued). Consequently

f (x)

(
z1

f (z1)
, z1

)
= (z , z1).

Therefore with x + 0 = f (z1)z1/(z1, z1), then f (x) = (x , x0) for all x ∈ H.

Next suppose there is another x1 such that f (x) = (x , x1) for all x ∈ H.
Then (x , x0 − x1) = 0 for all x ∈ H and so with x = x0 − x1, we have
(x0 − x1, x0 − x1) = 0 and so x0 = x1.
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Theorem 3.11.1. Riesz Representation Theorem.
Let f be a bounded linear functional on a Hilbert space H. There exists
exactly one x0 ∈ H such that f (x) = (x , x0) for all x ∈ H. Also
‖f ‖ = ‖x0‖.

Proof (continued). Finally we have

‖f ‖ = sup
‖x‖=1

|f (x)| = sup
‖x‖=1

|(x , x0)|

≤ sup
‖x‖=1

‖x‖ ‖x0‖ Schwarz’s Inequality (Theorem 3.4.1)

= ‖x0‖.

Alternatively,
‖x0‖2 = (x0, x0) = |f (x0)| ≤ ‖f ‖ ‖x0‖.

Therefore ‖f ‖ = ‖x0‖.
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