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Theorem 3.11.1. Riesz Representation Theorem.

Let f be a bounded linear functional on a Hilbert space H. There exists

exactly one xp € H such that f(x) = (x, xo) for all x € H. Also
11l = loll-
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Theorem 3.11.1. Riesz Representation Theorem.

Let f be a bounded linear functional on a Hilbert space H. There exists
exactly one xp € H such that f(x) = (x, xo) for all x € H. Also

11l = lixoll-

Proof. If f(x) =0 for all x € H, then take xog = 0. So without loss of
generality f(z) # 0 for some € H. Let F = {x € H | f(x) = 0}. Since f is
linear and bounded, it is continuous and so F is a (topologically) closed
subspace of H.
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Theorem 3.11.1. Riesz Representation Theorem.

Let f be a bounded linear functional on a Hilbert space H. There exists
exactly one xp € H such that f(x) = (x, xo) for all x € H. Also

11l = lixoll-

Proof. If f(x) =0 for all x € H, then take xog = 0. So without loss of
generality f(z) # 0 for some € H. Let F = {x € H | f(x) = 0}. Since f is
linear and bounded, it is continuous and so F is a (topologically) closed
subspace of H. By Theorem 3.10.4, there exists zp € F and z; € FL then
z1 # 0 and f(z1) # 0 since z; € F*. So for all x € H,

x — f(x)z1/f(z1) € F since

)z _ X_f(x)f(zl):
(= Ty) = o= =0

And hence (x — f(x)z1/f(z1),2z1) = 0 since z; € F*.
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Theorem 3.11.1 (continued 1)

Theorem 3.11.1. Riesz Representation Theorem.

Let f be a bounded linear functional on a Hilbert space H. There exists

exactly one xp € H such that f(x) = (x, xo) for all x € H. Also
11l = [1>oll-

Proof (continued). Consequently

) (7i5.m) = (@ )

Therefore with x +0 = f(z1)z1/(z1, z1), then f(x) = (x, xp) for all x € H.
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Theorem 3.11.1 (continued 1)

Theorem 3.11.1. Riesz Representation Theorem.

Let f be a bounded linear functional on a Hilbert space H. There exists
exactly one xp € H such that f(x) = (x, xo) for all x € H. Also

11l = lIxol-

Proof (continued). Consequently

) (7i5.m) = (@ )

Therefore with x +0 = f(z1)z1/(z1, z1), then f(x) = (x, xp) for all x € H.

Next suppose there is another x; such that (x) = (x, xy) for all x € H.
Then (x,x0 — x1) = 0 for all x € H and so with x = xg — x1, we have
(xo — x1,%0 — x1) = 0 and so xp = x3.
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Theorem 3.11.1 (continued 2)

Theorem 3.11.1. Riesz Representation Theorem.
Let f be a bounded linear functional on a Hilbert space H. There exists

exactly one xp € H such that f(x) = (x, xp) for all x € H. Also
11l = [l

Proof (continued). Finally we have

Il = sup |[f(x)| = sup [(x,x0)|
lIxlI=1 lIxlI=1
< sup |[|x||||xo0|| Schwarz's Inequality (Theorem 3.4.1)
lIxlI=1
= [Ioll-
Alternatively,

%1% = (x0,%0) = |£(x0)| < ||| l[xoll-

Therefore ||f|| = ||xo0]|- O
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