Advanced Differential Equations

Chapter 3. Hilbert Spaces and Orthonormal Systems Section 3.11. Linear Functionals and the Riesz Representation Theorem—Proofs of Theorems

Theorem 3.11.1. Riesz Representation Theorem

Theorem 3.11.1. Riesz Representation Theorem.

Let f be a bounded linear functional on a Hilbert space H. There exists exactly one $x_0 \in H$ such that $f(x) = (x, x_0)$ for all $x \in H$. Also $||f|| = ||x_0||$.

Proof. If f(x) = 0 for all $x \in H$, then take $x_0 = 0$. So without loss of generality $f(z) \neq 0$ for some $\in H$. Let $F = \{x \in H \mid f(x) = 0\}$. Since f is linear and bounded, it is continuous and so F is a (topologically) closed subspace of H.

Theorem 3.11.1. Riesz Representation Theorem

Theorem 3.11.1. Riesz Representation Theorem.

Let f be a bounded linear functional on a Hilbert space H. There exists exactly one $x_0 \in H$ such that $f(x) = (x, x_0)$ for all $x \in H$. Also $||f|| = ||x_0||$.

Proof. If f(x) = 0 for all $x \in H$, then take $x_0 = 0$. So without loss of generality $f(z) \neq 0$ for some $\in H$. Let $F = \{x \in H \mid f(x) = 0\}$. Since f is linear and bounded, it is continuous and so F is a (topologically) closed subspace of H. By Theorem 3.10.4, there exists $z_0 \in F$ and $z_1 \in F^{\perp}$ then $z_1 \neq 0$ and $f(z_1) \neq 0$ since $z_1 \in F^{\perp}$. So for all $x \in H$, $x - f(x)z_1/f(z_1) \in F$ since

$$f\left(x - \frac{f(x)z_1}{f(z_1)}\right) = f(x) - \frac{f(x)f(z_1)}{f(z_1)} = 0.$$

And hence $(x - f(x)z_1/f(z_1), z_1) = 0$ since $z_1 \in F^{\perp}$.

Theorem 3.11.1. Riesz Representation Theorem

Theorem 3.11.1. Riesz Representation Theorem.

Let f be a bounded linear functional on a Hilbert space H. There exists exactly one $x_0 \in H$ such that $f(x) = (x, x_0)$ for all $x \in H$. Also $||f|| = ||x_0||$.

Proof. If f(x) = 0 for all $x \in H$, then take $x_0 = 0$. So without loss of generality $f(z) \neq 0$ for some $\in H$. Let $F = \{x \in H \mid f(x) = 0\}$. Since f is linear and bounded, it is continuous and so F is a (topologically) closed subspace of H. By Theorem 3.10.4, there exists $z_0 \in F$ and $z_1 \in F^{\perp}$ then $z_1 \neq 0$ and $f(z_1) \neq 0$ since $z_1 \in F^{\perp}$. So for all $x \in H$, $x - f(x)z_1/f(z_1) \in F$ since

$$f\left(x-\frac{f(x)z_1}{f(z_1)}\right)=f(x)-\frac{f(x)f(z_1)}{f(z_1)}=0.$$

And hence $(x - f(x)z_1/f(z_1), z_1) = 0$ since $z_1 \in F^{\perp}$.

Theorem 3.11.1 (continued 1)

Theorem 3.11.1. Riesz Representation Theorem.

Let f be a bounded linear functional on a Hilbert space H. There exists exactly one $x_0 \in H$ such that $f(x) = (x, x_0)$ for all $x \in H$. Also $||f|| = ||x_0||$.

Proof (continued). Consequently

$$f(x)\left(\frac{z_1}{f(z_1)},z_1\right)=(z,z_1).$$

Therefore with $x + 0 = \overline{f(z_1)}z_1/(z_1, z_1)$, then $f(x) = (x, x_0)$ for all $x \in H$.

Next suppose there is another x_1 such that $f(x) = (x, x_1)$ for all $x \in H$. Then $(x, x_0 - x_1) = 0$ for all $x \in H$ and so with $x = x_0 - x_1$, we have $(x_0 - x_1, x_0 - x_1) = 0$ and so $x_0 = x_1$.

Theorem 3.11.1 (continued 1)

Theorem 3.11.1. Riesz Representation Theorem.

Let f be a bounded linear functional on a Hilbert space H. There exists exactly one $x_0 \in H$ such that $f(x) = (x, x_0)$ for all $x \in H$. Also $||f|| = ||x_0||$.

Proof (continued). Consequently

$$f(x)\left(\frac{z_1}{f(z_1)},z_1\right)=(z,z_1).$$

Therefore with $x + 0 = \overline{f(z_1)}z_1/(z_1, z_1)$, then $f(x) = (x, x_0)$ for all $x \in H$.

Next suppose there is another x_1 such that $f(x) = (x, x_1)$ for all $x \in H$. Then $(x, x_0 - x_1) = 0$ for all $x \in H$ and so with $x = x_0 - x_1$, we have $(x_0 - x_1, x_0 - x_1) = 0$ and so $x_0 = x_1$.

Theorem 3.11.1 (continued 2)

Theorem 3.11.1. Riesz Representation Theorem.

Let f be a bounded linear functional on a Hilbert space H. There exists exactly one $x_0 \in H$ such that $f(x) = (x, x_0)$ for all $x \in H$. Also $||f|| = ||x_0||$.

Proof (continued). Finally we have

$$\begin{split} \|f\| &= \sup_{\|x\|=1} |f(x)| = \sup_{\|x\|=1} |(x, x_0)| \\ &\leq \sup_{\|x\|=1} \|x\| \|x_0\| \text{ Schwarz's Inequality (Theorem 3.4.1)} \\ &= \|x_0\|. \end{split}$$

Alternatively,

$$||x_0||^2 = (x_0, x_0) = |f(x_0)| \le ||f|| ||x_0||.$$

Therefore $||f|| = ||x_0||$.