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Theorem 3.12.1

Theorem 3.12.1. Every separable Hilbert space contains a countable
dense subset.
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Theorem 3.12.1

Theorem 3.12.1

Theorem 3.12.1. Every separable Hilbert space contains a countable
dense subset.

Proof. Let {x,} be a complete orthonormal sequence in Hilbert space H.
Let

S ={(a1+B1)x1+ (2 + Poi)xo + -+ (an + Bni)xn | @i, Bi € Q, n € N}

Then S is dense in H and countable. OJ
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Theorem 3.12.2

Theorem 3.12.2. Every set of mutually orthogonal vectors in a separable
Hilbert space is countable.
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Theorem 3.12.2

Theorem 3.12.2. Every set of mutually orthogonal vectors in a separable
Hilbert space is countable.

Proof. Let S be a set of mutually orthogonal vectors in a separable
Hilbert space, and let S; = {x/||x|| | x € S,x # 0}. For any x,y € 51 we
have ||x — y||? = 2. Consider the set of open sets

B = {B(x,v2/2) | x € S1}. This is a collection of disjoint balls in the
Hilbert space. By Theorem 3.12.1, the space contains a countable dense
set D.
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Theorem 3.12.2

Theorem 3.12.2. Every set of mutually orthogonal vectors in a separable
Hilbert space is countable.

Proof. Let S be a set of mutually orthogonal vectors in a separable
Hilbert space, and let S; = {x/||x|| | x € S,x # 0}. For any x,y € 51 we
have ||x — y||? = 2. Consider the set of open sets

B = {B(x,v2/2) | x € S1}. This is a collection of disjoint balls in the
Hilbert space. By Theorem 3.12.1, the space contains a countable dense
set D. Since the set is dense, each ball in B contains at least one element
of D and since the balls are disjoint, different balls contain different
elements of D. So there is a one to one mapping of B into D. Therefore
B is countable and sets S; and S are countable. O]
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Theorem 3.12.3. Fundamental Theorem of Infinite
Dimensional Vector Spaces

Theorem 3.12.3. Fundamental Theorem of Infinite Dimensional
Vector Spaces.

Let H be a separable Hilbert space over scalar field C. Then:

(b) if H is infinite dimensional then H is isomorphic to /2.
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Theorem 3.12.3. Fundamental Theorem of Infinite
Dimensional Vector Spaces

Theorem 3.12.3. Fundamental Theorem of Infinite Dimensional
Vector Spaces.
Let H be a separable Hilbert space over scalar field C. Then:

(b) if H is infinite dimensional then H is isomorphic to /2.

Proof. Let {x,} be a complete orthonormal sequence in H. If H is infinite
dimensional then {x,} is an infinite sequence. Let x be an element of H.
Define T(x) = (a1, oo, . ..) where a,, = (x, x,) for n € N. By Theorem
3.8.3, T is one to one mapping from H onto ¢?. Also, T is linear. We
need only show that T preserves inner products. Denote o, = (x, x,) and
B = (y,x)n) for x,y € H.
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Theorem 3.12.3 (continued)

Theorem 3.12.3. Fundamental Theorem of Infinite Dimensional
Vector Spaces.
Let H be a separable Hilbert space over scalar field C. Then:

(b) if H is infinite dimensional then H is isomorphic to /2.

Proof.
Then

(T(X)’ T(y)) = ((011,042, .. ')v (ﬂlaﬁ% . )) = Zanﬁn = Z(X’XO)(Y»XO)
n=1

n=1

= Z(x7 (y,Xn)X,,) = (X, Z(y, Xn)Xn) = (X7Y)
n=1

n=1

since the inner product is continuous. O

Advanced Differential Equations April 22, 2019 6/6



	Theorem 3.12.1
	Theorem 3.12.2
	 Theorem 3.12.3. Fundamental Theorem of Infinite Dimensional Vector Spaces

