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Chapter 3. Hilbert Spaces and Orthonormal Systems
Section 3.12. Separable Hilbert Spaces—Proofs of Theorems
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Theorem 3.12.1

Theorem 3.12.1

Theorem 3.12.1. Every separable Hilbert space contains a countable
dense subset.

Proof. Let {xn} be a complete orthonormal sequence in Hilbert space H.
Let

S = {(α1 + β1)x1 + (α2 + β2i)x2 + · · ·+ (αn + βni)xn | αi , βi ∈ Q, n ∈ N}.

Then S is dense in H and countable.
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Theorem 3.12.2

Theorem 3.12.2

Theorem 3.12.2. Every set of mutually orthogonal vectors in a separable
Hilbert space is countable.

Proof. Let S be a set of mutually orthogonal vectors in a separable
Hilbert space, and let S1 = {x/‖x‖ | x ∈ S , x 6= 0}. For any x , y ∈ S1 we
have ‖x − y‖2 = 2. Consider the set of open sets
B = {B(x ,

√
2/2) | x ∈ S1}. This is a collection of disjoint balls in the

Hilbert space. By Theorem 3.12.1, the space contains a countable dense
set D.

Since the set is dense, each ball in B contains at least one element
of D and since the balls are disjoint, different balls contain different
elements of D. So there is a one to one mapping of B into D. Therefore
B is countable and sets S1 and S are countable.
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Theorem 3.12.3. Fundamental Theorem of Infinite Dimensional
Vector Spaces

Theorem 3.12.3. Fundamental Theorem of Infinite
Dimensional Vector Spaces

Theorem 3.12.3. Fundamental Theorem of Infinite Dimensional
Vector Spaces.
Let H be a separable Hilbert space over scalar field C. Then:

(b) if H is infinite dimensional then H is isomorphic to `2.

Proof. Let {xn} be a complete orthonormal sequence in H. If H is infinite
dimensional then {xn} is an infinite sequence. Let x be an element of H.
Define T (x) = (α1, α2, . . .) where αn = (x , xn) for n ∈ N. By Theorem
3.8.3, T is one to one mapping from H onto `2. Also, T is linear. We
need only show that T preserves inner products. Denote αn = (x , xn) and
β = (y , x)n) for x , y ∈ H.
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Theorem 3.12.3. Fundamental Theorem of Infinite Dimensional
Vector Spaces

Theorem 3.12.3 (continued)

Theorem 3.12.3. Fundamental Theorem of Infinite Dimensional
Vector Spaces.
Let H be a separable Hilbert space over scalar field C. Then:

(b) if H is infinite dimensional then H is isomorphic to `2.

Proof.
Then

(T (x),T (y)) = ((α1, α2, . . .), (β1, β2, . . .)) =
∞∑

n=1

αnβn =
∞∑

n=1

(x , x0)(y , x0)

=
∞∑

n=1

(x , (y , xn)xn) =

(
x ,

∞∑
n=1

(y , xn)xn

)
= (x , y)

since the inner product is continuous.

() Advanced Differential Equations April 22, 2019 6 / 6


	Theorem 3.12.1
	Theorem 3.12.2
	 Theorem 3.12.3. Fundamental Theorem of Infinite Dimensional Vector Spaces

