Advanced Differential Equations

Chapter 3. Hilbert Spaces and Orthonormal Systems Section 3.12. Separable Hilbert Spaces—Proofs of Theorems

Theorem 3.12.3. Fundamental Theorem of Infinite Dimensional Vector Spaces

Theorem 3.12.1

Theorem 3.12.1. Every separable Hilbert space contains a countable dense subset.

Proof. Let $\{x_n\}$ be a complete orthonormal sequence in Hilbert space *H*. Let

$S = \{(\alpha_1 + \beta_1)x_1 + (\alpha_2 + \beta_2 i)x_2 + \dots + (\alpha_n + \beta_n i)x_n \mid \alpha_i, \beta_i \in \mathbb{Q}, n \in \mathbb{N}\}.$

Then S is dense in H and countable.

Theorem 3.12.1. Every separable Hilbert space contains a countable dense subset.

Proof. Let $\{x_n\}$ be a complete orthonormal sequence in Hilbert space H. Let

$$S = \{ (\alpha_1 + \beta_1) x_1 + (\alpha_2 + \beta_2 i) x_2 + \dots + (\alpha_n + \beta_n i) x_n \mid \alpha_i, \beta_i \in \mathbb{Q}, n \in \mathbb{N} \}.$$

Then S is dense in H and countable.

Theorem 3.12.2. Every set of mutually orthogonal vectors in a separable Hilbert space is countable.

Proof. Let S be a set of mutually orthogonal vectors in a separable Hilbert space, and let $S_1 = \{x/||x|| \mid x \in S, x \neq 0\}$. For any $x, y \in S_1$ we have $||x - y||^2 = 2$. Consider the set of open sets $\mathcal{B} = \{B(x, \sqrt{2}/2) \mid x \in S_1\}$. This is a collection of disjoint balls in the Hilbert space. By Theorem 3.12.1, the space contains a countable dense set D.

Theorem 3.12.2. Every set of mutually orthogonal vectors in a separable Hilbert space is countable.

Proof. Let *S* be a set of mutually orthogonal vectors in a separable Hilbert space, and let $S_1 = \{x/||x|| \mid x \in S, x \neq 0\}$. For any $x, y \in S_1$ we have $||x - y||^2 = 2$. Consider the set of open sets $\mathcal{B} = \{B(x, \sqrt{2}/2) \mid x \in S_1\}$. This is a collection of disjoint balls in the Hilbert space. By Theorem 3.12.1, the space contains a countable dense set *D*. Since the set is dense, each ball in \mathcal{B} contains at least one element of *D* and since the balls are disjoint, different balls contain different elements of *D*. So there is a one to one mapping of \mathcal{B} into *D*. Therefore \mathcal{B} is countable and sets S_1 and *S* are countable. **Theorem 3.12.2.** Every set of mutually orthogonal vectors in a separable Hilbert space is countable.

Proof. Let *S* be a set of mutually orthogonal vectors in a separable Hilbert space, and let $S_1 = \{x/||x|| \mid x \in S, x \neq 0\}$. For any $x, y \in S_1$ we have $||x - y||^2 = 2$. Consider the set of open sets $\mathcal{B} = \{B(x, \sqrt{2}/2) \mid x \in S_1\}$. This is a collection of disjoint balls in the Hilbert space. By Theorem 3.12.1, the space contains a countable dense set *D*. Since the set is dense, each ball in \mathcal{B} contains at least one element of *D* and since the balls are disjoint, different balls contain different elements of *D*. So there is a one to one mapping of \mathcal{B} into *D*. Therefore \mathcal{B} is countable and sets S_1 and *S* are countable.

Theorem 3.12.3. Fundamental Theorem of Infinite Dimensional Vector Spaces

Theorem 3.12.3. Fundamental Theorem of Infinite Dimensional Vector Spaces.

Let *H* be a separable Hilbert space over scalar field \mathbb{C} . Then:

(b) if H is infinite dimensional then H is isomorphic to ℓ^2 .

Proof. Let $\{x_n\}$ be a complete orthonormal sequence in H. If H is infinite dimensional then $\{x_n\}$ is an infinite sequence. Let x be an element of H. Define $T(x) = (\alpha_1, \alpha_2, ...)$ where $\alpha_n = (x, x_n)$ for $n \in \mathbb{N}$. By Theorem 3.8.3, T is one to one mapping from H onto ℓ^2 . Also, T is linear. We need only show that T preserves inner products. Denote $\alpha_n = (x, x_n)$ and $\beta = (y, x)n$ for $x, y \in H$.

Theorem 3.12.3. Fundamental Theorem of Infinite Dimensional Vector Spaces

Theorem 3.12.3. Fundamental Theorem of Infinite Dimensional Vector Spaces.

Let H be a separable Hilbert space over scalar field \mathbb{C} . Then:

(b) if H is infinite dimensional then H is isomorphic to ℓ^2 .

Proof. Let $\{x_n\}$ be a complete orthonormal sequence in H. If H is infinite dimensional then $\{x_n\}$ is an infinite sequence. Let x be an element of H. Define $T(x) = (\alpha_1, \alpha_2, ...)$ where $\alpha_n = (x, x_n)$ for $n \in \mathbb{N}$. By Theorem 3.8.3, T is one to one mapping from H onto ℓ^2 . Also, T is linear. We need only show that T preserves inner products. Denote $\alpha_n = (x, x_n)$ and $\beta = (y, x)n$ for $x, y \in H$.

Vector Spaces

Theorem 3.12.3 (continued)

Theorem 3.12.3. Fundamental Theorem of Infinite Dimensional Vector Spaces.

Let H be a separable Hilbert space over scalar field \mathbb{C} . Then:

(b) if H is infinite dimensional then H is isomorphic to ℓ^2 .

Proof.

Then

$$(T(x), T(y)) = ((\alpha_1, \alpha_2, \ldots), (\beta_1, \beta_2, \ldots)) = \sum_{n=1}^{\infty} \alpha_n \overline{\beta}_n = \sum_{n=1}^{\infty} (x, x_0) \overline{(y, x_0)}$$

$$= \sum_{n=1}^{\infty} (x, (y, x_n) x_n) = \left(x, \sum_{n=1}^{\infty} (y, x_n) x_n \right) = (x, y)$$

since the inner product is continuous.