Advanced Differential Equations

Chapter 3. Hilbert Spaces and Orthonormal Systems Section 3.4. Norm in an Inner Product Space—Proofs of Theorems

Table of contents

- 1 Theorem 3.4.1. Schwarz's Inequality
- 2 Corollary 3.4.1
- 3 Theorem 3.4.2 Parallelogram Law
- 4 Theorem 3.4.3. Pythagorean Theorem

Theorem 3.4.1. Schwarz's Inequality

Theorem 3.4.1. Schwarz's Inequality.

For any x and y in an inner product space $|(x,y)| \le ||x|| \, ||y||$. Equality holds if and only if x and y are linearly dependent.

Proof. If y = 0, the inequality is satisfied. So without loss of generality, suppose $y \neq 0$. We know

$$0 \le (x + \alpha y, x + \alpha y) = (x, x) + \overline{\alpha}(x, y) + \alpha(y, x) + |\alpha|^2(y, y).$$

Let
$$\alpha = -(x, y)/(y, y)$$
.

Theorem 3.4.1. Schwarz's Inequality

Theorem 3.4.1. Schwarz's Inequality.

For any x and y in an inner product space $|(x,y)| \le ||x|| ||y||$. Equality holds if and only if x and y are linearly dependent.

Proof. If y = 0, the inequality is satisfied. So without loss of generality, suppose $y \neq 0$. We know

$$0 \le (x + \alpha y, x + \alpha y) = (x, x) + \overline{\alpha}(x, y) + \alpha(y, x) + |\alpha|^2(y, y).$$

Let
$$\alpha = -(x, y)/(y, y)$$
. Then

$$0 \le (x,x) - \overline{\left(\frac{(x,y)}{(y,y)}\right)}(x,y) - \frac{(x,y)}{(y,y)}(y,x) + \left|\frac{(x,y)}{(y,y)}\right|^2(y,y)$$
$$= (x,x) - \frac{|(x,y)|^2}{(y,y)} - \frac{|(x,y)|^2}{(y,y)} + \frac{|(x,y)|^2}{(y,y)} = (x,x) - \frac{|(x,y)|^2}{(y,y)}$$

or $0 \le (x, x)(y, y) - |(x, y)|^2$ or $|(x, y)| \le ||x|| ||y||$.

Theorem 3.4.1. Schwarz's Inequality

Theorem 3.4.1. Schwarz's Inequality.

For any x and y in an inner product space $|(x,y)| \le ||x|| \, ||y||$. Equality holds if and only if x and y are linearly dependent.

Proof. If y = 0, the inequality is satisfied. So without loss of generality, suppose $y \neq 0$. We know

$$0 \le (x + \alpha y, x + \alpha y) = (x, x) + \overline{\alpha}(x, y) + \alpha(y, x) + |\alpha|^2(y, y).$$

Let
$$\alpha = -(x, y)/(y, y)$$
. Then

$$0 \le (x,x) - \overline{\left(\frac{(x,y)}{(y,y)}\right)}(x,y) - \frac{(x,y)}{(y,y)}(y,x) + \left|\frac{(x,y)}{(y,y)}\right|^2(y,y)$$
$$= (x,x) - \frac{|(x,y)|^2}{(y,y)} - \frac{|(x,y)|^2}{(y,y)} + \frac{|(x,y)|^2}{(y,y)} = (x,x) - \frac{|(x,y)|^2}{(y,y)}$$

or $0 \le (x, x)(y, y) - |(x, y)|^2$ or $|(x, y)| \le ||x|| ||y||$.

Theorem 3.4.1 (continued)

Theorem 3.4.1. Schwarz's Inequality.

For any x and y in an inner product space $|(x,y)| \le ||x|| ||y||$. Equality holds if and only if x and y are linearly dependent.

Proof (continued). Next, if x and y are linearly dependent then $y = \alpha x$ and the inequality reduces to equality. Conversely, suppose $|(x,y)| = \|x\| \, \|y\|$ or equivalently

$$(x,y)(y,x) = (x,x)(y,y).$$
 (*)

Then by (*),

$$((y, y)x - (x, y)y, (y, y)x - (x, y)y)$$

$$= (y,y)^{2}(x,x) - (y,y)(y,x)(x,y) - (x,y)(y,y)(y,x) + (x,y)(y,x)(y,y) = 0.$$

Therefore (y, y)x - (x, y)y = 0 and x and y are linearly dependent.

Corollary 3.4.1

Corollary 3.4.1. For any two elements x and y of an inner product space we have

$$||x + y|| \le ||x|| + ||y||.$$

Proof. We have

$$||x + y||^{2} = (x + y, x + y) = (x, x) + (x, y) + \overline{(x, y)} + (y, y)$$

$$= (x, x) + 2\operatorname{Re}((x, y)) + (y, y)$$

$$\leq (x, x) + 2|(x, y)| + (y, y)$$

$$\leq ||x||^{2} + 2||x|| ||y|| + ||y||^{2} \text{ by Schwarz's Inequality}$$
(Theorem 3.4.1)
$$= (||x|| + ||y||)^{2}.$$

Corollary 3.4.1

Corollary 3.4.1. For any two elements x and y of an inner product space we have

$$||x + y|| \le ||x|| + ||y||.$$

Proof. We have

$$||x + y||^{2} = (x + y, x + y) = (x, x) + (x, y) + \overline{(x, y)} + (y, y)$$

$$= (x, x) + 2\operatorname{Re}((x, y)) + (y, y)$$

$$\leq (x, x) + 2|(x, y)| + (y, y)$$

$$\leq ||x||^{2} + 2||x|| ||y|| + ||y||^{2} \text{ by Schwarz's Inequality}$$
(Theorem 3.4.1)
$$= (||x|| + ||y||)^{2}.$$

Theorem 3.4.2. Parallelogram Law

Theorem 3.4.2. Parallelogram Law.

For any two elements x and y of an inner product space

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

Proof. We have

$$||x + y|^2 = (x + y, x + y) = (x, x) + (x, y) + (y, x) + (y, y)$$
$$= ||x||^2 + (x, y) + (y, x) + ||y||^2.$$
(*)

Replacing y with -y:

$$||x - y||^2 = ||x||^2 - (x, y) - (y, x) + ||y||^2.$$
 (**)

Adding (*) and (**), the result follows.

Theorem 3.4.2. Parallelogram Law

Theorem 3.4.2. Parallelogram Law.

For any two elements x and y of an inner product space

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

Proof. We have

$$||x + y|^2 = (x + y, x + y) = (x, x) + (x, y) + (y, x) + (y, y)$$
$$= ||x||^2 + (x, y) + (y, x) + ||y||^2.$$
(*)

Replacing y with -y:

$$||x - y||^2 = ||x||^2 - (x, y) - (y, x) + ||y||^2.$$
 (**)

Adding (*) and (**), the result follows.

Theorem 3.4.3. Pythagorean Theorem

Theorem 3.4.3. Pythagorean Theorem.

If x and y are orthogonal then

$$||x + y||^2 = ||x||^2 + ||y||^2.$$

Proof. We have

$$||x+y||^2 = (x+y, x+y) = (x,x) + (x,y) + (y,x) + (y,y) = ||x||^2 + ||y||^2.$$

Theorem 3.4.3. Pythagorean Theorem

Theorem 3.4.3. Pythagorean Theorem.

If x and y are orthogonal then

$$||x + y||^2 = ||x||^2 + ||y||^2.$$

Proof. We have

$$||x+y||^2 = (x+y, x+y) = (x, x) + (x, y) + (y, x) + (y, y) = ||x||^2 + ||y||^2.$$

