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Theorem 3.4.1. Schwarz's Inequality

Theorem 3.4.1. Schwarz’s Inequality.
For any x and y in an inner product space |(x, y)| < [|x|| |ly||- Equality
holds if and only if x and y are linearly dependent.
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Theorem 3.4.1. Schwarz’s Inequality

Theorem 3.4.1. Schwarz's Inequality

Theorem 3.4.1. Schwarz’s Inequality.

For any x and y in an inner product space |(x, y)| < [|x|| |ly||- Equality
holds if and only if x and y are linearly dependent.

Proof. If y = 0, the inequality is satisfied. So without loss of generality,
suppose y # 0. We know

0 < (x +ay,x +ay) = (x,x) + @x,y) + aly,x) + [a*(y, y)-
Let a = —(x,y)/(y, )
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Theorem 3.4.1. Schwarz's Inequality

Theorem 3.4.1. Schwarz’s Inequality.

For any x and y in an inner product space |(x, y)| < [|x|| |ly||- Equality
holds if and only if x and y are linearly dependent.

Proof. If y = 0, the inequality is satisfied. So without loss of generality,
suppose y # 0. We know

0 < (x+ay,x+ay) = (x,x) +a(x,y) + a(y,x) + [a[*(y,y)-
Let « = —(x,¥)/(y,y). Then

0 < (x,x) _<(W)>(X,y) B (x,y)( )+ '(x,y)

(v,y) o) (v,y)

2
(v,y)

— (xx) [CS215
’ (v, y) (v, y) (v, y)
or 0.< (x, x)(y,y) — [(x, ¥)[? or [(x,y)| < |Ix] Iyl

) T ) RPN (7]

(v,y)
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Theorem 3.4.1 (continued)

Theorem 3.4.1. Schwarz’s Inequality.
For any x and y in an inner product space |(x,y)| < ||x|| ||y]|- Equality
holds if and only if x and y are linearly dependent.

Proof (continued). Next, if x and y are linearly dependent then y = ax
and the inequality reduces to equality. Conversely, suppose
(%, ¥)I = IIx][ [ly[| or equivalently
(5 )y, x) = (%, x)(y, y)- (*)
Then by (%),
(v y)x = (. 9)y, (v y)x = (%, ¥)y)

= (v, )20 )=y, ) (v, X) (%, ¥) =6, ) (v, Y )y, )+, ) (v, X)(y, y) = 0.
Therefore (y,y)x — (x,y)y = 0 and x and y are linearly dependent. O
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Corollary 3.4.1

Corollary 3.4.1. For any two elements x and y of an inner product space
we have
X+ vl < lIxl +ivll-
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Corollary 3.4.1

Corollary 3.4.1. For any two elements x and y of an inner product space
we have
X+ vl < lIxl +ivll-

Proof. We have

(x+y,x+y)=0x)+ )+ (xy)+(v,y)

(x,x) + 2Re((x,y)) + (v,¥)

(x,x) +2[(x, y)| + (v, ¥)

1x[1? + 2[|x[[ lyll + [ly > by Schwarz's Inequality
(Theorem 3.4.1)

Ix + y1?

VANVAN

(lxll+ lly1D2.

O
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Theorem 3.4.2. Parallelogram Law

Theorem 3.4.2. Parallelogram Law.
For any two elements x and y of an inner product space

2 2 2 2
[ + [+ lx = y[I7 = 2(lIx[I + [y [I)-
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Theorem 3.4.2 Parallelogram Law

Theorem 3.4.2. Parallelogram Law

Theorem 3.4.2. Parallelogram Law.
For any two elements x and y of an inner product space

Ix + y 117+ lIx = yII> = 2(1Ix]1> + llyl?)-
Proof. We have

Ix +y> = (x+y,x+y) = (%) + (x,y) + (v, x) + (v, ¥)

= [IxI7 + O, ) + (v, %) + Iy )1 (*)
Replacing y with —y:

I =12 = IxI? = (x, ¥) = (v, %) + Iy 1% ()

Adding () and (), the result follows.
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Theorem 3.4.3. Pythagorean Theorem

Theorem 3.4.3. Pythagorean Theorem.
If x and y are orthogonal then

b+ y 112 = lIxII* + lly I
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Theorem 3.4.3. Pythagorean Theorem

Theorem 3.4.3. Pythagorean Theorem

Theorem 3.4.3. Pythagorean Theorem.
If x and y are orthogonal then

Ix + y[I> = 1Ix]I* + lly >
Proof. We have
Ix+y[I> = (x+y, x+y) = (x,x)+ (x,¥) + (v, x) + (v, y) = [Ix]> + ly]]*.

O
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