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Theorem/Example 3.5.6

Advanced Differential Equations J Theorem/Example 3.5.6. L?([a, b]) (the linear space of all square
[Lebesgue] integrable functions on [a, b]) is a Hilbert space.

Chapter 3. Hilbert Spaces and Orthonormal Systems
Section 3.5. Hilbert Spaces—Definition and Examples—Proofs of Proof. Let {f,} be a Cauchy sequence in L%([a, b]). Then
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Theorem/Example 3.5.6 (continued)

Proof (continued). So {f,} is a Cauchy sequence in L!([a, b]) and so
converges in L1([a, b]) (since it's a Banach space) to say f € L([a, b]).
Then fab |f — fa| — 0 as n — co. By Theorem 2.8.2 (see page 58) there is
a subsequence {f,,} convergent to f a.e. We can choose m, n sufficiently
— fp,|?> < &. With n — oo this
implies fab \fom — f|? < & by Fatou's Lemma (Theorem 2.8.5, page 61).
Therefore f € L?([a, b]). Also
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for n sufficiently large. Therefore f, — f under the L? norm and so L? is
complete. 0
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