Advanced Differential Equations

Chapter 3. Hilbert Spaces and Orthonormal Systems Section 3.5. Hilbert Spaces—Definition and Examples—Proofs of Theorems

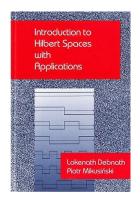


Table of contents

Theorem/Example 3.5.6

Theorem/Example 3.5.6. $L^2([a, b])$ (the linear space of all square [Lebesgue] integrable functions on [a, b]) is a Hilbert space.

Proof. Let $\{f_n\}$ be a Cauchy sequence in $L^2([a, b])$. Then

$$\int_a^b |f_m - f_n|^2 \to 0 \text{ as } m, n \to \infty.$$

By Schwarz's Inequality (Theorem 3.4.1),

$$|(|f_m - f_n|, 1)| = \left| \int_a^b |f_m - f_n| \right| = \int_a^b |f_m - f_n|$$
$$\leq \sqrt{\int_a^b 1} \sqrt{\int_a^b |f_m - f_n|^2} = \sqrt{b - a} \sqrt{\int_a^b |f_m - f_n|^2} \to 0$$

as $m, n \to \infty$.

Theorem/Example 3.5.6

Theorem/Example 3.5.6. $L^2([a, b])$ (the linear space of all square [Lebesgue] integrable functions on [a, b]) is a Hilbert space.

Proof. Let $\{f_n\}$ be a Cauchy sequence in $L^2([a, b])$. Then

$$\int_a^b |f_m - f_n|^2 \to 0 \text{ as } m, n \to \infty.$$

By Schwarz's Inequality (Theorem 3.4.1),

$$|(|f_m - f_n|, 1)| = \left| \int_a^b |f_m - f_n| \right| = \int_a^b |f_m - f_n|$$
$$\leq \sqrt{\int_a^b 1} \sqrt{\int_a^b |f_m - f_n|^2} = \sqrt{b - a} \sqrt{\int_a^b |f_m - f_n|^2} \to 0$$

as $m, n \to \infty$.

Theorem/Example 3.5.6 (continued)

Proof (continued). So $\{f_n\}$ is a Cauchy sequence in $L^1([a, b])$ and so converges in $L^1([a, b])$ (since it's a Banach space) to say $f \in L^1([a, b])$. Then $\int_a^b |f - f_n| \to 0$ as $n \to \infty$. By Theorem 2.8.2 (see page 58) there is a subsequence $\{f_{p_n}\}$ convergent to f a.e. We can choose m, n sufficiently large so that for a given $\varepsilon > 0$, $\int_a^b |f_{p_m} - f_{p_n}|^2 < \varepsilon$. With $n \to \infty$ this implies $\int_a^b |f_{p_m} - f|^2 \le \varepsilon$ by Fatou's Lemma (Theorem 2.8.5, page 61). Therefore $f \in L^2([a, b])$. Also

$$\int_{a}^{b} |f - f_{n}|^{2} \leq \int_{a}^{b} |f - f_{p_{n}}|^{2} + \int |f_{p_{n}} - f_{n}|^{2} < 2\varepsilon$$

for *n* sufficiently large. Therefore $f_n \rightarrow f$ under the L^2 norm and so L^2 is complete.

Theorem/Example 3.5.6 (continued)

Proof (continued). So $\{f_n\}$ is a Cauchy sequence in $L^1([a, b])$ and so converges in $L^1([a, b])$ (since it's a Banach space) to say $f \in L^1([a, b])$. Then $\int_a^b |f - f_n| \to 0$ as $n \to \infty$. By Theorem 2.8.2 (see page 58) there is a subsequence $\{f_{p_n}\}$ convergent to f a.e. We can choose m, n sufficiently large so that for a given $\varepsilon > 0$, $\int_a^b |f_{p_m} - f_{p_n}|^2 < \varepsilon$. With $n \to \infty$ this implies $\int_a^b |f_{p_m} - f|^2 \le \varepsilon$ by Fatou's Lemma (Theorem 2.8.5, page 61). Therefore $f \in L^2([a, b])$. Also

$$\int_a^b |f - f_n|^2 \leq \int_a^b |f - f_{p_n}|^2 + \int |f_{p_n} - f_n|^2 < 2\varepsilon$$

for *n* sufficiently large. Therefore $f_n \rightarrow f$ under the L^2 norm and so L^2 is complete.