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Theorem/Example 3.5.6

Theorem/Example 3.5.6. L2([a, b]) (the linear space of all square
[Lebesgue] integrable functions on [a, b]) is a Hilbert space.
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Theorem/Example 3.5.6

Theorem/Example 3.5.6

Theorem/Example 3.5.6. L2([a, b]) (the linear space of all square
[Lebesgue] integrable functions on [a, b]) is a Hilbert space.

Proof. Let {f,} be a Cauchy sequence in L?([a, b]). Then

b
/ ]fm—fn\2—>0as m, n — oo.
a

By Schwarz's Inequality (Theorem 3.4.1),
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Theorem/Example 3.5.6 (continued)

Proof (continued). So {f,} is a Cauchy sequence in L!([a, b]) and so
converges in L([a, b]) (since it's a Banach space) to say f € L!([a, b]).
Then fab |f — fy| — 0 as n — co. By Theorem 2.8.2 (see page 58) there is

a subsequence {f,,} convergent to f a.e.
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Theorem/Example 3.5.6 (continued)

Proof (continued). So {f,} is a Cauchy sequence in L!([a, b]) and so
converges in L([a, b]) (since it's a Banach space) to say f € L!([a, b]).
Then fab |f — fy| — 0 as n — co. By Theorem 2.8.2 (see page 58) there is
a subsequence {f,,} convergent to f a.e. We can choose m, n sufficiently
large so that for a given € > 0, fab |fom — fpy|2 < €. With n — oo this
implies fab |f,, — f|? < € by Fatou's Lemma (Theorem 2.8.5, page 61).
Therefore f € L2([a, b]). Also

b b
[t [T -t [1f, -6 <2

for n sufficiently large. Therefore f,, — f under the L2 norm and so L? is
complete. O
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