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Theorem 3.6.1

Theorem 3.6.1. A strongly convergent sequence is weakly convergent (to
the same limit).
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Theorem 3.6.1

Theorem 3.6.1

Theorem 3.6.1. A strongly convergent sequence is weakly convergent (to
the same limit).

Proof. Suppose x, — x. Then ||x, — x|| — 0 as n — oco. By Schwarz's
Inequality

(X0 =, )| < lIx0 = x|l |yl = 0 as n — o0

and so (x, — x,y) — 0 as n — oo, for all y € E. Therefore x,— x. O
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Theorem 3.6.2

Theorem 3.6.2. If x,—,, x and ||x,|| — ||x||, then x, — x.
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Theorem 3.6.2

Theorem 3.6.2. If x,—,, x and ||x,|| — ||x||, then x, — x.

Proof. If (x,,y) — (x,y) for all y € E, then (x,,x) — (x,x) = ||x]|°.
Then

[[%n — XH2 = (X0 — X, Xn — X) = (Xn, Xn) = (Xn, X) — (X, Xn) + (Xn, Xn)

= [lxal|* — 2Re(xn, x) + [Ix[[* — [Ix]|* = 2|[x[|* + [Ix]|* = 0

as n — oo. L]
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