Advanced Differential Equations

Chapter 3. Hilbert Spaces and Orthonormal Systems Section 3.6. Strong and Weak Convergence—Proofs of Theorems

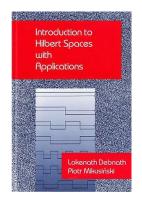


Table of contents

Theorem 3.6.1. A strongly convergent sequence is weakly convergent (to the same limit).

Proof. Suppose $x_n \to x$. Then $||x_n - x|| \to 0$ as $n \to \infty$. By Schwarz's Inequality

$$|(x_n - x, y)| \le ||x_n - x|| ||y|| \to 0 \text{ as } n \to \infty$$

and so $(x_n - x, y) \rightarrow 0$ as $n \rightarrow \infty$, for all $y \in E$. Therefore $x_n \rightarrow_w x$.

Theorem 3.6.1. A strongly convergent sequence is weakly convergent (to the same limit).

Proof. Suppose $x_n \to x$. Then $||x_n - x|| \to 0$ as $n \to \infty$. By Schwarz's Inequality

$$|(x_n - x, y)| \le ||x_n - x|| ||y|| \to 0$$
 as $n \to \infty$

and so $(x_n - x, y) \rightarrow 0$ as $n \rightarrow \infty$, for all $y \in E$. Therefore $x_n \rightarrow_w x$.

Theorem 3.6.2

Theorem 3.6.2. If $x_n \rightarrow_w x$ and $||x_n|| \rightarrow ||x||$, then $x_n \rightarrow x$.

Proof. If $(x_n, y) \to (x, y)$ for all $y \in E$, then $(x_n, x) \to (x, x) = ||x||^2$. Then

$$||x_n - x||^2 = (x_n - x, x_n - x) = (x_n, x_n) = (x_n, x) - (x, x_n) + (x_n, x_n)$$
$$= ||x_n||^2 - 2\operatorname{Re}(x_n, x) + ||x||^2 \to ||x||^2 - 2||x||^2 + ||x||^2 = 0$$

as $n \to \infty$.

Theorem 3.6.2

Theorem 3.6.2. If $x_n \rightarrow_w x$ and $||x_n|| \rightarrow ||x||$, then $x_n \rightarrow x$.

Proof. If $(x_n, y) \rightarrow (x, y)$ for all $y \in E$, then $(x_n, x) \rightarrow (x, x) = ||x||^2$. Then

$$||x_n - x||^2 = (x_n - x, x_n - x) = (x_n, x_n) = (x_n, x) - (x, x_n) + (x_n, x_n)$$
$$= ||x_n||^2 - 2\operatorname{Re}(x_n, x) + ||x||^2 \to ||x||^2 - 2||x||^2 + ||x||^2 = 0$$

as $n \to \infty$.