Advanced Differential Equations

Chapter 3. Hilbert Spaces and Orthonormal Systems Section 3.7. Orthogonal and Orthonormal Systems—Proofs of Theorems

Theorem 3.7.1

Theorem 3.7.1. Orthogonal systems are linearly independent.

Proof. Let *S* be an orthogonal system. Suppose $\sum_{k=1}^{n} \alpha_k x_k = 0$ for scalars $\alpha_k \in \mathbb{C}$. Then

$$0 = \left(\sum_{k=1}^{n} \alpha_k x_k, \sum_{k=1}^{n} \alpha_k x_k\right) = \sum_{k=1}^{n} |\alpha_k|^2 ||x_k||^2.$$

Therefore $\alpha_k = 0$ for all $k \in \mathbb{N}$ and so any finite subset of S is linearly independent and so S is linearly independent.

Theorem 3.7.1. Orthogonal systems are linearly independent.

Proof. Let S be an orthogonal system. Suppose $\sum_{k=1}^{n} \alpha_k x_k = 0$ for scalars $\alpha_k \in \mathbb{C}$. Then

$$0 = \left(\sum_{k=1}^{n} \alpha_k x_k, \sum_{k=1}^{n} \alpha_k x_k\right) = \sum_{k=1}^{n} |\alpha_k|^2 ||x_k||^2.$$

Therefore $\alpha_k = 0$ for all $k \in \mathbb{N}$ and so any finite subset of S is linearly independent and so S is linearly independent.

Example 3.7.3. Legendre Polynomials

Example 3.7.3. The Legendre polynomials defined by $P_0(x) = 1$,

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} [(x^2 - 1)^n], \text{ for } n \in \mathbb{N}$$

form an orthogonal system in $L^2([-1,1])$.

Solution. Denote $p_n(x) = (x^2 - 1)^n$. Then

$$\int_{-1}^{1} P_n(x) x^m \, dx = \frac{1}{2^n n!} \int_{-1}^{1} p_n^{(n)}(x) x^m \, dx.$$

Notice that for $x = \pm 1$ and k = 0, 1, ..., (n-1) that $p_n^{(k)}(x) = 0$.

Example 3.7.3. Legendre Polynomials

Example 3.7.3. The Legendre polynomials defined by $P_0(x) = 1$,

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} [(x^2 - 1)^n], \text{ for } n \in \mathbb{N}$$

form an orthogonal system in $L^2([-1,1])$.

Solution. Denote $p_n(x) = (x^2 - 1)^n$. Then

$$\int_{-1}^{1} P_n(x) x^m \, dx = \frac{1}{2^n n!} \int_{-1}^{1} p_n^{(n)}(x) x^m \, dx.$$

Notice that for $x = \pm 1$ and k = 0, 1, ..., (n-1) that $p_n^{(k)}(x) = 0$. So with Integration by Parts with $u = x^m$ and $dv = p_n^{(n)}(x) dx = \frac{d^n}{dx^n}[(x^2 - 1)^n] dx$, we have $du = mx^{m-1} dx$ and $v = p_n^{(n-1)}(x)$ we have

$$\int_{-1}^{1} p_n^{(n)}(x) x^m \, dx = x^m p_n^{(n-1)}(x) |_{-1}^{1} - \int_{-1}^{1} m x^{m-1} p_n^{(n-1)}(x) \, dx \dots$$

Example 3.7.3. Legendre Polynomials

Example 3.7.3. The Legendre polynomials defined by $P_0(x) = 1$,

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} [(x^2 - 1)^n], \text{ for } n \in \mathbb{N}$$

form an orthogonal system in $L^2([-1,1])$.

Solution. Denote $p_n(x) = (x^2 - 1)^n$. Then

$$\int_{-1}^{1} P_n(x) x^m \, dx = \frac{1}{2^n n!} \int_{-1}^{1} p_n^{(n)}(x) x^m \, dx.$$

Notice that for $x = \pm 1$ and k = 0, 1, ..., (n-1) that $p_n^{(k)}(x) = 0$. So with Integration by Parts with $u = x^m$ and $dv = p_n^{(n)}(x) dx = \frac{d^n}{dx^n} [(x^2 - 1)^n] dx$, we have $du = mx^{m-1} dx$ and $v = p_n^{(n-1)}(x)$ we have

$$\int_{-1}^{1} p_n^{(n)}(x) x^m \, dx = x^m p_n^{(n-1)}(x) |_{-1}^{1} - \int_{-1}^{1} m x^{m-1} p_n^{(n-1)}(x) \, dx \dots$$

Example 3.7.3 (continued 1)

Solution (continued). ...

$$= -m \int_{-1}^{1} p_n^{(n-1)}(x) x^{m-1} \, dx.$$

Repeated Integration by Parts yields

$$\int_{-1}^{1} p_n^{(n)}(x) x^m \, dx = (-1)^m m! \int_{-1}^{1} p_n^{(n-m)}(x) \, dx$$
$$= (-1)^m m! (p_n^{(n-m-1)}(x))|_{-1}^1 = 0 \ (m < n).$$

Therefore $\int_{-1}^{1} P_n(x) x^m dx = 0$ for m < n and $P_n(x)$ is orthogonal to x^m for all m < n. Since P_m is a polynomial of degree m,

$$(P_n, P_m) = \int_{-1}^{1} P_n(x) P_m(x) \, dx = 0$$
 for $m \neq n$.

Therefore the Legendre polynomials form an orthogonal system.

Example 3.7.3 (continued 1)

Solution (continued). ...

$$= -m \int_{-1}^{1} p_n^{(n-1)}(x) x^{m-1} \, dx.$$

Repeated Integration by Parts yields

$$\int_{-1}^{1} p_n^{(n)}(x) x^m \, dx = (-1)^m m! \int_{-1}^{1} p_n^{(n-m)}(x) \, dx$$
$$= (-1)^m m! (p_n^{(n-m-1)}(x))|_{-1}^1 = 0 \ (m < n).$$

Therefore $\int_{-1}^{1} P_n(x) x^m dx = 0$ for m < n and $P_n(x)$ is orthogonal to x^m for all m < n. Since P_m is a polynomial of degree m,

$$(P_n, P_m) = \int_{-1}^{1} P_n(x) P_m(x) \, dx = 0 \text{ for } m \neq n.$$

Therefore the Legendre polynomials form an orthogonal system.

Example 3.7.3 (continued 2)

Example 3.7.3. The Legendre polynomials defined by $P_0(x) = 1$,

$$P_n(x) = rac{1}{2^n n!} rac{d^n}{dx^n} [(x^2 - 1)^n], ext{ for } n \in \mathbb{N}$$

form an orthogonal system in $L^2([-1,1])$.

Solution (continued). Notice that $\int_{-1}^{1} (P_n(x))^2 dx = \frac{2}{2n+1}$ (see page 102) and so $\sqrt{n+1/2}P_n(x)$ form an orthonormal system in $L^2([-1,1])$.