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Theorem 3.7.1

Theorem 3.7.1. Orthogonal systems are linearly independent.
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Theorem 3.7.1

Theorem 3.7.1. Orthogonal systems are linearly independent.

Proof. Let S be an orthogonal system. Suppose > ;_; ayxx = 0 for
scalars o, € C. Then

n n n
0= (Z aka,ZOéka> = Z e[|k 1.
k=1 k=1 k=1

Therefore oy = 0 for all k € N and so any finite subset of S is linearly
independent and so S is linearly independent. O
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Example 3.7.3. Legendre Polynomials

Example 3.7.3. The Legendre polynomials defined by Py(x) =1,
1 4"
~27nl dx”

form an orthogonal system in L2([—1,1]).

P,(x) [(x>—=1)"], for ne N
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Example 3.7.3. Legendre Polynomials

Example 3.7.3. Legendre Polynomials
Example 3.7.3. The Legendre polynomials defined by Py(x) =1,
1 d”
P) = 2ot G

form an orthogonal system in L2([—1,1]).

[(x>—=1)"], for ne N

Solution. Denote p,(x) = (x> — 1)". Then

[ posn o= i [ 0xma
n\ X)X X_2nn! _lpn X)X X.

-1

Notice that for x = £1and k =0,1,...,(n—1) that p(k)(x) =0.

n
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Example 3.7.3. Legendre Polynomials

Example 3.7.3. The Legendre polynomials defined by Py(x) =1,
1 4"
~27nl dx”

form an orthogonal system in L2([—1,1]).

Pn(x)

[(x>—=1)"], for ne N

Solution. Denote p,(x) = (x> — 1)". Then

1 1 1
/_1 Pn(x)x™ dx = oo /_1 p,(,n)(x)xm dx.
Notice that for x = £1and k =0,1,...,(n—1) that p,(,k)(x) = 0. So with
Integration by Parts with u = x™ and dv = pgn)(x) dx = 4o [(x? = 1)"] dx,

T odxn
we have du = mx™ 1dx and v = p,(,"_l)(x) we have

1 1
/ pl(‘ln)(X)Xm dx = mel(7n_1)(x)|1_1 - / me_lpr(vn_l)(X) dx...
-1 -1
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Example 3.7.3 (continued 1)

Solution (continued). ...

! 1
= —m/ pf,n_ )(X)Xm_l dx.
—1

Repeated Integration by Parts yields

' (M Nx™dx = (=1)™m 1 ("=m) () dx
/_1pn() dx = (~1) !/_1pn (x)d
= (=1)"m!(p{" " V()L =0 (m < n).

Therefore f_ll Pn(x)x™ dx = 0 for m < n and P,(x) is orthogonal to x™
for all m < n.
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Example 3.7.3 (continued 1)

Solution (continued). ...

! 1
= —m/ pf,n_ )(X)Xm_l dx.
—1

Repeated Integration by Parts yields

1 1
/ P (x)x™ dx = (—1)"m! / P (x) dx
-1 -1

= (=1)"m!(p{" " V()L =0 (m < n).

Therefore f_ll Pn(x)x™ dx = 0 for m < n and P,(x) is orthogonal to x™
for all m < n. Since Py, is a polynomial of degree m,

1
(Pn, Pm) = /1 P,(x)Pm(x) dx = 0 for m # n.

Therefore the Legendre polynomials form an orthogonal system.
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Example 3.7.3 (continued 2)

Example 3.7.3. The Legendre polynomials defined by Py(x) =1,

1 d"

Pr(¥) = 2ot ger

[(x* = 1)"], for n€N

form an orthogonal system in L?([—1,1]).

1

Solution (continued). Notice that / (Pa(x))? dx =
. 2n+1

102) and so /n + 1/2P,(x) form an orthonormal system in L2([—1,1]).

(see page
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