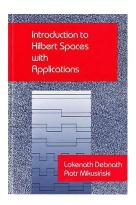
Advanced Differential Equations

Chapter 4. Linear Operators on Hilbert Spaces

Section 4.11. The Fourier Transform—Proofs of Theorems



October 12, 2019

Theorem 4.11.3

Theorem 4.11.3. If $f_1, f_2, ... \in L^1(\mathbb{R})$ and $\int_{-\infty}^{\infty} |f_n(x) - f(x)| dx = ||f_n - f||_1 \to 0 \text{ as } n \to \infty \text{ then the sequence of}$ Fourier transforms $\{\hat{f}_n\}$ converges to \hat{f} uniformly on \mathbb{R} .

Proof. First.

$$|\hat{f}(k)| \leq \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |e^{-ikx}f(x)| dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |f(x)| dx$$

for all $k \in \mathbb{R}$. So

$$\sup_{k \in \mathbb{R}} |\hat{f}_n(k) - \hat{f}(k)| \le \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |f_n(x) - f(x)| \, dx = \frac{1}{\sqrt{2\pi}} \|f_n - f\|_1.$$

Since $\|f_n - f\|_2 \to 0$ then $\sup_{k \in \mathbb{R}} |\hat{f}_n(k) = \hat{f}(k)| \to 0$ as $n \to \infty$ and hence $\hat{f}_n \to \hat{f}$ uniformly on \mathbb{R} .

Theorem 4.11.2

Theorem 4.11.2. The Fourier transform of an integrable function is a continuous function.

Proof. Let $f \in L^1(\mathbb{R})$. For any $k, h \in \mathbb{R}$ we have

$$|\hat{f}(k+h) - \hat{f}(k)| = \left| \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (e^{-i(k+h)x} f(x) - e^{-ikx} f(x)) \, dx \right|$$

$$= \frac{1}{\sqrt{2\pi}} \left| \int_{-\infty}^{\infty} e^{-ikx} (e^{-ihx} - 1) f(x) \, dx \right|$$

$$\leq \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |e^{-ikx} - 1| |f(x)| \, dx \text{ since } |e^{-ikx}| = 1. \quad (4.11.3)$$

Now $|e^{-ihx} - 1||f(x)| \le 2|f(x)|$ where f is integrable an $\lim_{h\to 0} |e^{-ihx}-1|=0$ for all $x\in\mathbb{R}$, so $\lim_{h\to 0} \frac{1}{\sqrt{2\pi}} |e^{-ihx}-1| |f(x)| dx$ by the Lebesgue Dominated Convergence Theorem, Theorem 2.8.4. That is, $\lim_{h\to 0} \hat{f}(k+h) = \hat{f}(k)$ and $\mathscr{F}(f) = \hat{f}$ is continuous at k. Since k is an arbitrary real number, then $\mathscr{F}(f) = \hat{f}$ is continuous on \mathbb{R} .

Advanced Differential Equations

October 12, 2019

Theorem 4.11.4

Theorem 4.11.4. The Riemann-Lebesgue Theorem.

If $f \in L^1(\mathbb{R})$ then $\lim_{|k| \to \infty} |\hat{f}(k)| = 0$.

Proof. Since
$$e^{-ikx} = -(-1)e^{-ikx} = -e^{-i\pi}e^{-ikx} = -e^{-ikx-i\pi}$$
 then

$$\hat{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} -e^{-ikx - i\pi} f(x) dx = \frac{-1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ik(x + \pi/k)} f(x) dx$$
$$= \frac{-1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx} f(x - \pi/k) dx.$$

Hence

$$\hat{f}(k) = \frac{1}{2}(\hat{f}(k) + \hat{f}(k))$$

$$= \frac{1}{2} \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx} f(x) dx - \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx} f(x - \pi/k) dx \right)$$

$$= \frac{1}{2} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx} (f(x) - f(x - \pi/k)) dx \dots$$

Theorem 4.11.4 (continued)

Theorem 4.11.4. The Riemann-Lebesgue Theorem.

If $f \in L^1(\mathbb{R})$ then $\lim_{|k| \to \infty} |\hat{f}(k)| = 0$.

Proof (continued).

... and so
$$|\hat{f}(k)| \leq \frac{1}{2\sqrt{2\pi}} \int_{-\infty}^{\infty} |f(x) - f(x - \pi/k)| \, dx$$
. Theorem 2.4.2 states: "If $f \in L^1(\mathbb{R})$, the $\lim_{t \to 0} \int_{-\infty}^{\infty} |f(x+t) - f(x)| \, dx = 0$." Since $f(x) - f(x - \pi/k) \in L^1(\mathbb{R})$, then by Theorem 2.4.2 $\lim_{k \to \infty} \int_{-\infty}^{\infty} |f(x+\pi/k) - f(x)| = 0$. Therefore, $\lim_{k \to \infty} |\hat{f}(k)| = 0$, as claimed.

Advanced Differential Equations

October 12, 2019

Theorem 4.11.6

Theorem 4.11.6. If f is a continuous piecewise differentiable function. $f, f' \in L^1(\mathbb{R})$, and $\lim_{|x| \to \infty} f(x) = 0$ then $\mathscr{F}\{f'\} = ik\mathscr{F}\{f\}$.

Proof. Integration by parts gives

$$\mathscr{F}\{f'\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f'(x)e^{-ikx} dx$$

$$= \frac{1}{\sqrt{2\pi}} f(x)e^{-ikx}|_{-\infty}^{\infty} - \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (-ik)f(x)e^{-ikx} dx$$

$$= 0 + \frac{ik}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-kx} f(x) dx \text{ since } \lim_{|x| \to \infty} f(x) = 0$$
because $f \in L^1(\mathbb{R})$ and f is continuous
$$= ik\mathscr{F}\{f\}.$$

October 12, 2019

Theorem 4.11.7

Theorem 4.11.7. Convolution Theorem.

Let $f, g \in L^1(\mathbb{R})$. Then $\mathscr{F}\{f * g\} = \mathscr{F}\{f\}\mathscr{F}\{g\}$.

Proof. Let $f,g \in L^1(\mathbb{R})$ and h = f * g. Then $h \in L^1(\mathbb{R})$ by Theorem 2.15.1 (the proof of which is based on Fubini's Theorem) and so $\mathcal{F}(h)$ is defined. We have

$$\hat{h}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} h(x)e^{-ikx} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x-u)g(u) du\right) e^{-ikx} dx$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} g(u) \int_{-\infty}^{\infty} e^{-ikx} f(x) dx du$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} g(u) \int_{-\infty}^{\infty} e^{-ik(x+u)} f(x) dx du$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-iku} g(u) du \int_{-\infty}^{\infty} e^{-ikx} f(x) dx = \hat{g}(k) \hat{f}(k). \quad \Box$$

Theorem 4.11.8

Theorem 4.11.8. Let f be a continuous function on $\mathbb R$ vanishing outside a bounded interval. Then $\hat{f} = \in L^2(\mathbb{R})$ and $\|\hat{f}\|_2 = \|f\|_2$.

Advanced Differential Equations

Proof. First, suppose f vanishes outside the interval $[-\pi, \pi]$. The sequence of functions $\varphi_n(x) = \frac{1}{\sqrt{2\pi}} e^{-inx}$ for $n \in \mathbb{Z}$ is an orthonormal sequence in $L^2([-\pi,\pi])$ (and also in $L^2(\mathbb{R})$), so by Parseval's Formula (Theorem 3.8.5) we get

$$||f||_2^2 = \sum_{n=-\infty}^{\infty} \left| \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-inx} f(x) dx \right|^2 = \sum_{n=-\infty}^{\infty} |\hat{f}(n)|^2.$$

Replacing f(x) with $e^{-\xi x} f(x)$ in the previous equality we get $||f||_2^2 = \sum_{n=-\infty}^{\infty} |\hat{f}(n+\xi)|^2$ (since $||f||_2^2 = ||e^{-i\xi x}f(x)||_2^2$)

Theorem 4.11.8 (continued 1)

Proof (continued). Integration of both sides with respect to ξ from 0 to 1 yields

$$||f||_{2}^{2} = \sum_{n=-\infty}^{\infty} \int_{0}^{1} |\hat{f}(n+\xi)|^{2} d\xi$$

$$= \cdots + \int_{0}^{1} |\hat{f}(-1+\xi)|^{2} d\xi + \int_{0}^{1} |\hat{f}(0+\xi)|^{2} d\xi$$

$$+ \int_{0}^{1} |\hat{f}(1+\xi)|^{2} d\xi \cdots$$

$$= \cdots + \int_{-1}^{0} |\hat{f}(\xi)|^{2} d\xi + \int_{0}^{1} |\hat{f}(\xi)|^{2} d\xi + \int_{1}^{2} |\hat{f}(\xi)|^{2} d\xi + \cdots$$

$$= \int_{-\infty}^{\infty} |\hat{f}(\xi)|^{2} d\xi = ||f||_{2}^{2},$$

as claimed (in the case that f vanishes outside $[-\pi, \pi]$).

Advanced Differential Equations

October 12, 2019

Theorem 4.11.9

Theorem 4.11.9. Parseval's Relation.

If $f \in L^2(\mathbb{R})$ then $\|\hat{f}\|_2 = \|f\|_2$.

Proof. Let $\{\varphi_n\}$ be a sequence of continuous functions with compact support convergent to f in $L^2(\mathbb{R})$. Then by Theorem 4.11.8, $\|\hat{\varphi}_n\|_2 = \|\varphi_n\|_2$ for all $n \in \mathbb{N}$. Now

$$\begin{split} \|\hat{f}\|_2 &= \left\| \lim_{n \to \infty} \hat{\varphi}_n \right\|_2 \\ &= \lim_{n \to \infty} \left\| \hat{\varphi}_n \right\|_2 \text{ since } \| \cdot \|_2 \text{ is a continuous mapping into } \mathbb{R} \\ &= \lim_{n \to \infty} \| \varphi_n \|_2 \\ &= \left\| \lim_{n \to \infty} \varphi_n \right\|_2 \text{ since } \| \cdot \|_2 \text{ is a continuous mapping into } \mathbb{R} \\ &= \| f \|_2, \end{split}$$

as claimed.

Theorem 4.11.8 (continued 2)

Theorem 4.11.8. Let f be a continuous function on \mathbb{R} vanishing outside a bounded interval. Then $\hat{f} = \in L^2(\mathbb{R})$ and $\|\hat{f}\|_2 = \|f\|_2$.

Proof (continued). If f does not vanish outside $[-\pi, \pi]$, then we take a positive λ for which $g(x) = f(\lambda x)$ vanishes outside $[-\pi, \pi]$. Then $\hat{g}(k) = (1/\lambda)\hat{f}(k/\lambda)$ and, as argued above

$$\|f\|_2^2=\lambda\|g\|_2^2=\lambda\|\hat{g}\|_2^2=\lambda\int_{-\infty}^\infty\left|rac{1}{\lambda}\hat{f}\left(rac{\xi}{\lambda}
ight)
ight|^2\,d\xi=\int_{-\infty}^\infty|\hat{f}(\xi)|^2\,d\xi=\|\hat{f}\|_2^2,$$

as claimed in the general case.

Advanced Differential Equations

October 12, 2019

Theorem 4.11.10

Theorem 4.11.10. Let $f \in L^2(\mathbb{R})$. Then

$$\hat{f}(k) = \lim_{n \to \infty} \frac{1}{\sqrt{2\pi}} \int_{-n}^{n} e^{-ikx} f(x) dx$$

where the convergence is with respect to the norm in $L^2(\mathbb{R})$.

Proof. For $n \in \mathbb{N}$ define $f_n(x) = \begin{cases} f(x) & \text{if } |x| < n \\ 0 & \text{if } |x| \ge n. \end{cases}$ Then $|f-f_n||_2 \to 0$ and so $||\hat{f}-\hat{f}_n||_2 \to 0$ as $n \to \infty$. Also,

$$\hat{f}_n = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx} f_n(x) dx = \frac{1}{\sqrt{2\pi}} \int_{-n}^{n} e^{-ikx} f(x) dx$$

since $f_n(x) = 0$ for $|x| \ge n$ and the claim follows.

$$\int_{-\infty}^{\infty} f(x)\hat{g}(x) dx = \int_{-\infty}^{\infty} \hat{f}(x)g(x) dx.$$

Proof. For $n \in \mathbb{Z}$ define

$$f_n(x) = \left\{ egin{array}{ll} f(x) & ext{if } |x| < n \ 0 & ext{if } |x| \geq n \end{array}
ight. ext{ and } g_n(x) = \left\{ egin{array}{ll} g(x) & ext{if } |x| < n \ 0 & ext{if } |x| \geq n. \end{array}
ight.$$

Now
$$\hat{f}_m(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ix\xi} f_m(\xi) d\xi$$
, so

$$\int_{-\infty}^{\infty} \hat{f}_m(x)g_n(x) dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g_n(x) \int_{-\infty}^{\infty} e^{-in\xi} f_m(\xi) d\xi dx.$$

Advanced Differential Equations

October 12, 2019 14

14 / 24

Theorem 4.11.11. Weak Parseval's Relation

Theorem 4.11.11 (continued 2)

Proof (continued). ...

$$\int_{-\infty}^{\infty} \hat{f}_m g_n(x) \, dx$$

$$=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f_m(\xi)\int_{-\infty}^{\infty}e^{-ix\xi}g_n(x)\,dx\,d\xi=\int_{-\infty}^{\infty}f_m(\xi)\hat{g}(\xi)\,d\xi.$$

Since $\|g - g_n\|_2 \to 0$ and $\|\hat{g} - \hat{g}_n\| \to 0$, then be letting $n \to \infty$ we have

$$\int_{-\infty}^{\infty} \hat{f}_m(x)g(x) dx = \int_{-\infty}^{\infty} f_m(x)\hat{g}(x) dx$$

by the continuity of the inner product (or continuity of the norm $\|\cdot\|_2$). Similarly, letting $m\to\infty$ we have

$$\int_{-\infty}^{\infty} \hat{f}(x)g(x) dx = \int_{-\infty}^{\infty} f(x)\hat{g}(x) dx,$$

as claimed.

Theorem 4.11.11 (continued 1)

Proof (continued). The function of x and ξ , $e^{-inx}g_n(x)f_m(x)$ is integrable over \mathbb{R}^2 . So Fubini's Theorem (Theorem 2.14.1, which allows us to change the order of integration in a double integral, with $f(x,y)=e^{-in\xi}g_n(x)f_m(\xi)$ and $F(x)=\int_{-\infty}^{\infty}e^{-in\xi}g_x(x)f_m(\xi)\,d\xi$) we have

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) = \int_{-\infty}^{\infty} F(x) dx = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-in\xi} g_n(x) f_m(\xi) d\xi dx < \infty$$

and so

$$\int_{-\infty}^{\infty} \hat{f}_m g_n(x) dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g_n(x) \int_{-\infty}^{\infty} e^{-ix\xi} f_m(\xi) d\xi dx$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-ix\xi} g_n(x) f_m(\xi) d\xi dx$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-ix\xi} g_n(x) f_m(\xi) dx d\xi$$

Advanced Differential Equations

October 12, 2019 15 /

Lemma 4.11.1

Lemma 4.11.1

Lemma 4.11.1. Let $f \in L^2(\mathbb{R})$ and let $g = \overline{\hat{f}}$. Then $f = \overline{\hat{g}}$.

Proof. Using the inner product on $L^2(\mathbb{R})$ we have

$$(f,\overline{\hat{g}}) = \int_{-\infty}^{\infty} f(x)\overline{\hat{g}}(x) dx$$

$$= \int_{-\infty}^{\infty} \hat{f}(x)\overline{g}(x) dx \text{ by Theorem 4.11.11, Weak Parseval's Relation}$$

$$= \int_{-\infty}^{\infty} \hat{f}(x)\hat{f}(x) dx \text{ since } g = \overline{\hat{f}} \text{ or } \overline{g} = \hat{f} \text{ by hypothesis}$$

$$= (\hat{f},\hat{f}) = \|\hat{f}\|_{2}^{2}$$

$$= \|f\|_{2}^{2} \text{ by Theorem 4.11.9, Parseval's Relation.}$$

Since $\|f\|_2^2$ is real then $\overline{(f,\overline{\hat{g}})} = \|f\|_2^2$. By Theorem 4.11.9 (Parseval's Relation), $\|\hat{g}\|_2^2 = \|g\|_2^2$ and $\|\hat{f}\|_2^2 = \|f\|_2^2$, and since $g = \overline{\hat{f}}$ by hypothesis then $\|g\|_2 = \|\hat{f}\|_2 = \|\hat{f}\|_2$ so that $\|\hat{g}\|_2^2 = \|g\|_2^2 = \|\hat{f}\|_2^2 = \|f\|_2^2$.

Lemma 4.11.1 (continued)

Lemma 4.11.1. Let $f \in L^2(\mathbb{R})$ and let $g = \overline{f}$. Then $f = \overline{g}$.

Proof (continued). Finally,

$$\begin{split} \|f - \overline{\hat{g}}\|_2^2 &= (f - \overline{\hat{g}}, f - \overline{\hat{g}}) = (f, f) - (\overline{\hat{g}}, f) - (f, \overline{\hat{g}}) + (\overline{\hat{g}}, \overline{\hat{g}}) \\ &= \|f\|_2^2 - \overline{(f, \overline{\hat{g}})} - (f, \overline{\hat{g}}) + \|\overline{\hat{g}}\|_2^2 = \|f\|_2^2 - \|f\|_2^2 - \|f\|_2^2 + \|f\|_2^2 = 0 \\ \text{since } \overline{(f, \overline{\hat{g}})} &= \|f\|_2^2, \ (f, \overline{\hat{g}}) = \|f\|_2^2, \ \text{and } \|\overline{\hat{g}}\|_2 = \|\hat{g}\|_2 = \|f\|_2. \ \text{Therefore,} \\ f &= \overline{\hat{g}}, \ \text{as claimed.} \end{split}$$

Advanced Differential Equations

October 12, 2019

Theorem 4.11.13

Theorem 4.11.13. General Persaval's Relation.

If $f,g\in L^2(\mathbb{R})$, then

$$\int_{-\infty}^{\infty} f(x)\overline{g}(x) dx = \int_{-\infty}^{\infty} \hat{f}(k)\overline{\hat{g}} dk.$$

Proof. By the polarization identity states (see Exercise 3.13.9)

$$(f,g) = \frac{1}{4}(\|f+g\|_2^2 - \|f-g\|_2^2 + i\|f_ig\|_2^2 - i\|f-ig\|_2^2).$$

So

$$\int_{-\infty}^{\infty} f(x)\overline{g}(x) dx = (f,g) \text{ by definition of inner product on } L^2(\mathbb{R})$$

$$= \frac{1}{4}(\|f+g\|_2^2 - \|f-g\|_2^2 + i\|f-ig\|_2^2 - i\|f-ig\|_2^2)$$
by the polarization identity

Theorem 4.11.12

Theorem 4.11.12. Inversion of Fourier Transform on $L^2(\mathbb{R})$. Let $f \in L^2(\mathbb{R})$. Then

$$f(x) = \lim_{n \to \infty} \frac{1}{\sqrt{2\pi}} \int_{-n}^{n} e^{ikx} \hat{f}(k) dk$$

where the convergence is with respect to the norm in $L^2(\mathbb{R})$.

Proof. Let $f \in L^2(\mathbb{R})$. Define $g = \overline{\hat{f}}$. Then by Lemma 4.11.1,

$$f(x) = \overline{\hat{g}}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx} g(k) dk = \frac{1}{\sqrt{2\pi}} \lim_{n \to \infty} \int_{-n}^{n} e^{-ikx} g(k) dk$$
$$= \frac{1}{\sqrt{2\pi}} \lim_{n \to \infty} \int_{-n}^{n} e^{ikx} \overline{g}(k) dk = \frac{1}{\sqrt{2\pi}} \lim_{n \to \infty} \int_{-n}^{n} e^{-kx} \hat{f}(k) dk,$$

as claimed.

Advanced Differential Equations

October 12, 2019

П

Theorem 4.11.13 (continued)

Theorem 4.11.13. General Persaval's Relation.

If $f,g\in L^2(\mathbb{R})$, then

$$\int_{-\infty}^{\infty} f(x)\overline{g}(x) dx = \int_{-\infty}^{\infty} \hat{f}(k)\overline{\hat{g}} dk.$$

Proof (continued). ...

$$\int_{-\infty}^{\infty} f(x)\overline{g}(x) dx = \frac{1}{4}(\|\hat{f} + \hat{g}\|_{2}^{2} - \|\hat{f} - \hat{g}\|_{2}^{2} + i\|\hat{f} - i\hat{g}\|_{2}^{2} - i\|\hat{f} - i\hat{g}\|_{2}^{2})$$
since \mathscr{F} is linear (by Theorem 4.11.1)
and by Theorem 4.11.9, Parseval's Relation
$$= (\hat{f}, \hat{g}) \text{ by the polarization identity}$$

$$= \int_{-\infty}^{\infty} \hat{f}(x)\overline{\hat{g}}(x) dx \text{ by the definition of inner product,}$$

as claimed

Theorem 4.11.14

Theorem 4.11.14. Plancherel's Theorem.

For every $f \in L^2(\mathbb{R})$ there exists $\hat{f} \in L^2(\mathbb{R})$ such that:

(a) If
$$f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$$
 then $\hat{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx} f(x) dx$.

(b)
$$\left\| \hat{f}(k) - \frac{1}{\sqrt{2\pi}} \int_{-n}^{n} e^{-ikx} f(x) dx \right\|_{2} \to 0$$
 and $\left\| f(k) - \frac{1}{\sqrt{2\pi}} \int_{-n}^{n} e^{ikx} \hat{f}(x) dx \right\|_{2} \to 0$ as $n \to \infty$.

- (c) $||f||_2 = ||\hat{f}||_2$.
- (d) The mapping $f \mapsto \hat{f}$ is a Hilbert space isomorphism of $L^2(\mathbb{R})$ onto $L^2(\mathbb{R})$.

Proof. We still need to prove part (d).

We know that \mathscr{F} is linear by Theorem 4.11.1. We know that the mapping preserves inner products by the General Parseval's Relation, Theorem 4.11.13.

Advanced Differential Equations

Theorem 4.11.15

Theorem 4.11.15. The Fourier transform is an unitary operator on $L^2(\mathbb{R})$.

Proof. First, note that
$$\mathscr{F}\{\overline{g}\}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx} \overline{g}(x) dx$$

$$=\frac{1}{\sqrt{2\pi}}\overline{\int_{-\infty}^{\infty}e^{ikx}g(x)\,dx}=\overline{\mathscr{F}^{-1}\{g\}(k)}.\quad (*)$$

Then

$$(\mathscr{F}\{f\},g) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \mathscr{F}\{f\}\overline{g}(x) \, dx \text{ by the definition of inner product}$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) \mathscr{F}\{\overline{g}\}(x) \, dx \text{ by Theorem 4.11.11}$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) \overline{\mathscr{F}^{-1}\{g\}(k)} \, dx \text{ by (*)}$$

$$= (f,\mathscr{F}^{-1}\{g\}) \text{ by the definition of inner product.}$$

So $\mathscr{F}^*\mathscr{F}^{-1}$ and $\mathscr{F}\mathscr{F}^*=\mathscr{F}^*\mathscr{F}=\mathcal{I}$ so that \mathscr{F} is unitary, as claimed. \square

heorem 4.11.14 Plancherel's Theorem

Theorem 4.11.14 (continued)

Proof (continued). If $\hat{f} = \hat{g}$ then

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx} f(x) dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx} g(x) dx$$

or $\int_{-\infty}^{\infty} e^{-ikx} (f(x) - g(x)) dx = 0$ for all $k \in \mathbb{R}$, and hence f(x) = g(x) almost everywhere (i.e., f = g in $L^2(\mathbb{R})$). For onto, let $f \in L^2(\mathbb{R})$ and define $h = \overline{f}$ and $g = \overline{f}$. By Lemma 4.11.1, $\overline{f} = h = \overline{g}$, so that $f = \hat{g}$. So f is the image of g under the mapping and the mapping is onto. That is, $\mathscr{F}: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ is a Hilbert space isomorphism, as claimed.

Advanced Differential Equations

October 12, 2019