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Theorem 4.11.2

Theorem 4.11.2

Theorem 4.11.2. The Fourier transform of an integrable function is a
continuous function.

Proof. Let f ∈ L1(R).For any k, h ∈ R we have

|f̂ (k + h)− f̂ (k)| =
∣∣∣∣ 1√

2π

∫ ∞

−∞
(e−i(k+h)x f (x)− e−ikx f (x)) dx

∣∣∣∣
=

1√
2π

∣∣∣∣∫ ∞

−∞
e−ikx(e−ihx − 1)f (x) dx

∣∣∣∣
≤ 1√

2π

∫ ∞

−∞
|e−ikx − 1||f (x)| dx since |e−ikx | = 1. (4.11.3)

Now |e−ihx − 1||f (x)| ≤ 2|f (x)| where f is integrable an
limh→0 |e−ihx − 1| = 0 for all x ∈ R, so limh→0

1√
2π
|e−ihx − 1||f (x)| dx by

the Lebesgue Dominated Convergence Theorem, Theorem 2.8.4. That is,
limh→0 f̂ (k + h) = f̂ (k) and F (f ) = f̂ is continuous at k. Since k is an
arbitrary real number, then F (f ) = f̂ is continuous on R.
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Theorem 4.11.3

Theorem 4.11.3

Theorem 4.11.3. If f1, f2, . . . ∈ L1(R) and∫∞
−∞ |fn(x)− f (x)| dx = ‖fn − f ‖1 → 0 as n →∞ then the sequence of

Fourier transforms {f̂n} converges to f̂ uniformly on R.

Proof. First,

|f̂ (k)| ≤ 1√
2π

∫ ∞

−∞
|e−ikx f (x)| dx =

1√
2π

∫ ∞

−∞
|f (x)| dx

for all k ∈ R. So

sup
k∈R

|f̂n(k)− f̂ (k)| ≤ 1√
2π

∫ ∞

−∞

∫ ∞

−∞
|fn(x)− f (x)| dx =

1√
2π
‖fn − f ‖1.

Since ‖fn − f ‖2 → 0 then supk∈R |f̂n(k) = f̂ (k)| → 0 as n →∞ and hence
f̂n → f̂ uniformly on R.
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Theorem 4.11.4. The Riemann-Lebesgue Theorem

Theorem 4.11.4

Theorem 4.11.4. The Riemann-Lebesgue Theorem.
If f ∈ L1(R) then lim|k|→∞ |f̂ (k)| = 0.

Proof. Since e−ikx = −(−1)e−ikx = −e−iπe−ikx = −e−ikx−iπ then

f̂ (k) =
1√
2π

∫ ∞

−∞
−e−ikx−iπf (x) dx =

−1√
2π

∫ ∞

−∞
e−ik(x+π/k)f (x) dx

=
−1√
2π

∫ ∞

−∞
e−ikx f (x − π/k) dx .

Hence

f̂ (k) =
1

2
(f̂ (k) + f̂ (k))

=
1

2

(
1√
2π

∫ ∞

−∞
e−ikx f (x) dx − 1√

2π

∫ ∞

−∞
e−ikx f (x − π/k) dx

)
=

1

2

1√
2π

∫ ∞

−∞
e−ikx(f (x)− f (x − π/k)) dx . . .
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Theorem 4.11.4. The Riemann-Lebesgue Theorem

Theorem 4.11.4 (continued)

Theorem 4.11.4. The Riemann-Lebesgue Theorem.
If f ∈ L1(R) then lim|k|→∞ |f̂ (k)| = 0.

Proof (continued).

. . . and so |f̂ (k)| ≤ 1

2
√

2π

∫ ∞

−∞
|f (x)− f (x − π/k)| dx . Theorem 2.4.2

states: “If f ∈ L1(R), the limt→0

∫∞
−∞ |f (x + t)− f (x)| dx = 0.” Since

f (x)− f (x − π/k) ∈ L1(R), then by Theorem 2.4.2

lim
k→∞

∫ ∞

−∞
|f (x + π/k)− f (x)| = 0. Therefore, limk→∞ |f̂ (k)| = 0, as

claimed.
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Theorem 4.11.6

Theorem 4.11.6

Theorem 4.11.6. If f is a continuous piecewise differentiable function,
f , f ′ ∈ L1(R), and lim|x |→∞ f (x) = 0 then F{f ′} = ikF{f }.

Proof. Integration by parts gives

F{f ′} =
1√
2π

∫ ∞

−∞
f ′(x)e−ikx dx

=
1√
2π

f (x)e−ikx |∞−∞ − 1√
2π

∫ ∞

−∞
(−ik)f (x)e−ikx dx

= 0 +
ik√
2π

∫ ∞

−∞
e−kx f (x) dx since lim

|x |→∞
f (x) = 0

because f ∈ L1(R) and f is continuous

= ikF{f }.
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Theorem 4.11.7. Convolution Theorem

Theorem 4.11.7

Theorem 4.11.7. Convolution Theorem.
Let f , g ∈ L1(R). Then F{f ∗ g} = F{f }F{g}.
Proof. Let f , g ∈ L1(R) and h = f ∗ g . Then h ∈ L1(R) by Theorem
2.15.1 (the proof of which is based on Fubini’s Theorem) and so F (h) is
defined. We have

ĥ(k) =
1√
2π

∫ ∞

−∞
h(x)e−ikx dx

=
1√
2π

∫ ∞

−∞

(
1√
2π

∫ ∞

−∞
f (x − u)g(u) du

)
e−ikx dx

=
1

2π

∫ ∞

−∞
g(u)

∫ ∞

−∞
e−ikx f (x) dx du

=
1

2π

∫ ∞

−∞
g(u)

∫ ∞

−∞
e−ik(x+u)f (x) dx du

=
1

2π

∫ ∞

−∞
e−ikug(u) du

∫ ∞

−∞
e−ikx f (x) dx = ĝ(k)f̂ (k).
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Theorem 4.11.8

Theorem 4.11.8

Theorem 4.11.8. Let f be a continuous function on R vanishing outside
a bounded interval. Then f̂ =∈ L2(R) and ‖f̂ ‖2 = ‖f ‖2.

Proof. First, suppose f vanishes outside the interval [−π, π]. The

sequence of functions ϕn(x) =
1√
2π

e−inx for n ∈ Z is an orthonormal

sequence in L2([−π, π]) (and also in L2(R)), so by Parseval’s Formula
(Theorem 3.8.5) we get

‖f ‖2
2 =

∞∑
n=−∞

∣∣∣∣ 1√
2π

∫ ∞

−∞
e−inx f (x) dx

∣∣∣∣2 =
∞∑

n=−∞
|f̂ (n)|2.

Replacing f (x) with e−ξx f (x) in the previous equality we get
‖f ‖2

2 =
∑∞

n=−∞ |f̂ (n + ξ)|2 (since ‖f ‖2
2 = ‖e−iξx f (x)‖2

2).
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Theorem 4.11.8

Theorem 4.11.8 (continued 1)

Proof (continued). Integration of both sides with respect to ξ from 0 to
1 yields

‖f ‖2
2 = =

∞∑
n=−∞

∫ 1

0
|f̂ (n + ξ)|2 dξ

= · · ·+
∫ 1

0
|f̂ (−1 + ξ)|2 dξ +

∫ 1

0
|f̂ (0 + ξ)|2 dξ

+

∫ 1

0
|f̂ (1 + ξ)|2 dξ · · ·

= · · ·+
∫ 0

−1
|f̂ (ξ)|2 dξ +

∫ 1

0
|f̂ (ξ)|2 dξ +

∫ 2

1
|f̂ (ξ)|2 dξ + · · ·

=

∫ ∞

−∞
|f̂ (ξ)|2 dξ = ‖f ‖2

2,

as claimed (in the case that f vanishes outside [−π, π]).
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Theorem 4.11.8

Theorem 4.11.8 (continued 2)

Theorem 4.11.8. Let f be a continuous function on R vanishing outside
a bounded interval. Then f̂ =∈ L2(R) and ‖f̂ ‖2 = ‖f ‖2.

Proof (continued). If f does not vanish outside [−π, π], then we take a
positive λ for which g(x) = f (λx) vanishes outside [−π, π]. Then
ĝ(k) = (1/λ)f̂ (k/λ) and, as argued above,

‖f ‖2
2 = λ‖g‖2

2 = λ‖ĝ‖2
2 = λ

∫ ∞

−∞

∣∣∣∣ 1λ f̂

(
ξ

λ

)∣∣∣∣2 dξ =

∫ ∞

−∞
|f̂ (ξ)|2 dξ = ‖f̂ ‖2

2,

as claimed in the general case.
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Theorem 4.11.9. Parseval’s Relation

Theorem 4.11.9

Theorem 4.11.9. Parseval’s Relation.
If f ∈ L2(R) then ‖f̂ ‖2 = ‖f ‖2.

Proof. Let {ϕn} be a sequence of continuous functions with compact
support convergent to f in L2(R). Then by Theorem 4.11.8,
‖ϕ̂n‖2 = ‖ϕn‖2 for all n ∈ N. Now

‖f̂ ‖2 =
∥∥∥ lim

n→∞
ϕ̂n

∥∥∥
2

= lim
n→∞

‖ϕ̂n‖2 since ‖ · ‖2 is a continuous mapping into R

= lim
n→∞

‖ϕn‖2

=
∥∥∥ lim

n→∞
ϕn

∥∥∥
2

since ‖ · ‖2 is a continuous mapping into R

= ‖f ‖2,

as claimed.
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Theorem 4.11.10

Theorem 4.11.10

Theorem 4.11.10. Let f ∈ L2(R). Then

f̂ (k) = lim
n→∞

1√
2π

∫ n

−n
e−ikx f (x) dx

where the convergence is with respect to the norm in L2(R).

Proof. For n ∈ N define fn(x) =

{
f (x) if |x | < n

0 if |x | ≥ n.
Then

|f − fn‖2 → 0 and so ‖f̂ − f̂n‖2 → 0 as n →∞. Also,

f̂n =
1√
2π

∫ ∞

−∞
e−ikx fn(x) dx =

1√
2π

∫ n

−n
e−ikx f (x) dx

since fn(x) = 0 for |x | ≥ n and the claim follows.

() Advanced Differential Equations October 12, 2019 13 / 24



Theorem 4.11.10

Theorem 4.11.10

Theorem 4.11.10. Let f ∈ L2(R). Then

f̂ (k) = lim
n→∞

1√
2π

∫ n

−n
e−ikx f (x) dx

where the convergence is with respect to the norm in L2(R).

Proof. For n ∈ N define fn(x) =

{
f (x) if |x | < n

0 if |x | ≥ n.
Then

|f − fn‖2 → 0 and so ‖f̂ − f̂n‖2 → 0 as n →∞. Also,

f̂n =
1√
2π

∫ ∞

−∞
e−ikx fn(x) dx =

1√
2π

∫ n

−n
e−ikx f (x) dx

since fn(x) = 0 for |x | ≥ n and the claim follows.

() Advanced Differential Equations October 12, 2019 13 / 24



Theorem 4.11.11. Weak Parseval’s Relation

Theorem 4.11.11

Theorem 4.11.11. Weak Parseval’s Relation.
If f , g ∈ L2(R) then∫ ∞

−∞
f (x)ĝ(x) dx =

∫ ∞

−∞
f̂ (x)g(x) dx .

Proof. For n ∈ Z define

fn(x) =

{
f (x) if |x | < n

0 if |x | ≥ n
and gn(x) =

{
g(x) if |x | < n

0 if |x | ≥ n.

Now f̂m(x) =
1√
2π

∫ ∞

−∞
e−ixξfm(ξ) dξ, so

∫ ∞

−∞
f̂m(x)gn(x) dx =

1√
2π

∫ ∞

−∞
gn(x)

∫ ∞

−∞
e−inξfm(ξ) dξ dx .
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Theorem 4.11.11. Weak Parseval’s Relation

Theorem 4.11.11 (continued 1)

Proof (continued). The function of x and ξ, e−inxgn(x)fm(x) is
integrable over R2. So Fubini’s Theorem (Theorem 2.14.1, which allows us
to change the order of integration in a double integral, with
f (x , y) = e−inξgn(x)fm(ξ) and F (x) =

∫∞
−∞ e−inξgx(x)fm(ξ) dξ) we have∫ ∞

−∞

∫ ∞

−∞
f (x , y) =

∫ ∞

−∞
F (x) dx =

∫ ∞

−∞

∫ ∞

−∞
e−inξgn(x)fm(ξ) dξ dx < ∞

and so ∫ ∞

−∞
f̂mgn(x) dx =

1√
2π

∫ ∞

−∞
gn(x)

∫ ∞

−∞
e−ixξfm(ξ) dξ dx

=
1√
2π

∫ ∞

−∞

∫ ∞

−∞
e−ixξgn(x)fm(ξ) dξ dx

=
1√
2π

∫ ∞

−∞

∫ ∞

−∞
e−ixξgn(x)fm(ξ) dxdξ
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Theorem 4.11.11. Weak Parseval’s Relation

Theorem 4.11.11 (continued 2)

Proof (continued). . . . ∫ ∞

−∞
f̂mgn(x) dx

=
1√
2π

∫ ∞

−∞
fm(ξ)

∫ ∞

−∞
e−ixξgn(x) dx dξ =

∫ ∞

−∞
fm(ξ)ĝ(ξ) dξ.

Since ‖g − gn‖2 → 0 and ‖ĝ − ĝn‖ → 0, then be letting n →∞ we have∫ ∞

−∞
f̂m(x)g(x) dx =

∫ ∞

−∞
fm(x)ĝ(x) dx

by the continuity of the inner product (or continuity of the norm ‖ · ‖2).
Similarly, letting m →∞ we have∫ ∞

−∞
f̂ (x)g(x) dx =

∫ ∞

−∞
f (x)ĝ(x) dx ,

as claimed.
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Lemma 4.11.1

Lemma 4.11.1

Lemma 4.11.1. Let f ∈ L2(R) and let g = f̂ . Then f = ĝ .

Proof. Using the inner product on L2(R) we have

(f , ĝ) =

∫ ∞

−∞
f (x)ĝ(x) dx

=

∫ ∞

−∞
f̂ (x)g(x) dx by Theorem 4.11.11, Weak Parseval’s Relation

=

∫ ∞

−∞
f̂ (x)f̂ (x) dx since g = f̂ or g = f̂ by hypothesis

= (f̂ , f̂ ) = ‖f̂ ‖2
2

= ‖f ‖2
2 by Theorem 4.11.9, Parseval’s Relation.

Since ‖f ‖2
2 is real then (f , ĝ) = ‖f ‖2

2. By Theorem 4.11.9 (Parseval’s

Relation), ‖ĝ‖2
2 = ‖g‖2

2 and ‖f̂ ‖2
2 = ‖f ‖2

2, and since g = f̂ by hypothesis

then ‖g‖2 = ‖f̂ ‖2 = ‖f̂ ‖2 so that ‖ĝ‖2
2 = ‖g‖2

2 = ‖f̂ ‖2
2 = ‖f ‖2

2.
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Lemma 4.11.1

Lemma 4.11.1 (continued)

Lemma 4.11.1. Let f ∈ L2(R) and let g = f̂ . Then f = ĝ .

Proof (continued). Finally,

‖f − ĝ‖2
2 = (f − ĝ , f − ĝ) = (f , f )− (ĝ , f )− (f , ĝ) + (ĝ , ĝ)

= ‖f ‖2
2 − (f , ĝ)− (f , ĝ) + ‖ĝ‖2

2 = ‖f ‖2
2 − ‖f ‖2

2 − ‖f ‖2
2 + ‖f ‖2

2 = 0

since (f , ĝ) = ‖f ‖2
2, (f , ĝ) = ‖f ‖2

2, and ‖ĝ‖2 = ‖ĝ‖2 = ‖f ‖2. Therefore,
f = ĝ , as claimed.
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Lemma 4.11.1

Lemma 4.11.1 (continued)
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Theorem 4.11.12. Inversion of Fourier Transform on L2(R)

Theorem 4.11.12

Theorem 4.11.12. Inversion of Fourier Transform on L2(R).
Let f ∈ L2(R). Then

f (x) = lim
n→∞

1√
2π

∫ n

−n
e ikx f̂ (k) dk

where the convergence is with respect to the norm in L2(R).

Proof. Let f ∈ L2(R). Define g = f̂ . Then by Lemma 4.11.1,

f (x) = ĝ(x) =
1√
2π

∫ ∞

−∞
e−ikxg(k) dk =

1√
2π

lim
n→∞

∫ n

−n
e−ikxg(k) dk

=
1√
2π

lim
n→∞

∫ n

−n
e ikxg(k) dk =

1√
2π

lim
n→∞

∫ n

−n
e−kx f̂ (k) dk,

as claimed.
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Theorem 4.11.13. General Persaval’s Relation

Theorem 4.11.13

Theorem 4.11.13. General Persaval’s Relation.
If f , g ∈ L2(R), then∫ ∞

−∞
f (x)g(x) dx =

∫ ∞

−∞
f̂ (k)ĝ dk.

Proof. By the polarization identity states (see Exercise 3.13.9)

(f , g) =
1

4
(‖f + g‖2

2 − ‖f − g‖2
2 + i‖fig‖2

2 − i‖f − ig‖2
2).

So∫ ∞

−∞
f (x)g(x) dx = (f , g) by definition of inner product on L2(R)

=
1

4
(‖f + g‖2

2 − ‖f − g‖2
2 + i‖f − ig‖2

2 − i‖f − ig‖2
2)

by the polarization identity
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Theorem 4.11.13. General Persaval’s Relation

Theorem 4.11.13 (continued)

Theorem 4.11.13. General Persaval’s Relation.
If f , g ∈ L2(R), then∫ ∞

−∞
f (x)g(x) dx =

∫ ∞

−∞
f̂ (k)ĝ dk.

Proof (continued). . . .∫ ∞

−∞
f (x)g(x) dx =

1

4
(‖f̂ + ĝ‖2

2 − ‖f̂ − ĝ‖2
2 + i‖f̂ − i ĝ‖2

2 − i‖f̂ − i ĝ‖2
2)

since F is linear (by Theorem 4.11.1)

and by Theorem 4.11.9, Parseval’s Relation

= (f̂ , ĝ) by the polarization identity

=

∫ ∞

−∞
f̂ (x)ĝ(x) dx by the definition of inner product,

as claimed.
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Theorem 4.11.14. Plancherel’s Theorem

Theorem 4.11.14

Theorem 4.11.14. Plancherel’s Theorem.
For every f ∈ L2(R) there exists f̂ ∈ L2(R) such that:

(a) If f ∈ L1(R) ∩ L2(R) then f̂ (k) =
1√
2π

∫ ∞

−∞
e−ikx f (x) dx .

(b)

∥∥∥∥f̂ (k)− 1√
2π

∫ n

−n
e−ikx f (x) dx

∥∥∥∥
2

→ 0 and∥∥∥∥f (k)− 1√
2π

∫ n

−n
e ikx f̂ (x) dx

∥∥∥∥
2

→ 0 as n →∞.

(c) ‖f ‖2 = ‖f̂ ‖2.

(d) The mapping f 7→ f̂ is a Hilbert space isomorphism of L2(R)
onto L2(R).

Proof. We still need to prove part (d).
We know that F is linear by Theorem 4.11.1. We know that the mapping
preserves inner products by the General Parseval’s Relation, Theorem
4.11.13.
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Theorem 4.11.14. Plancherel’s Theorem

Theorem 4.11.14 (continued)

Proof (continued). If f̂ = ĝ then

1√
2π

∫ ∞

−∞
e−ikx f (x) dx =

1√
2π

∫ ∞

−∞
e−ikxg(x) dx

or
∫∞
−∞ e−ikx(f (x)− g(x)) dx = 0 for all k ∈ R, and hence f (x) = g(x)

almost everywhere (i.e., f = g in L2(R)). For onto, let f ∈ L2(R) and

define h = f and g = f̂ . By Lemma 4.11.1, f = h = ĝ , so that f = ĝ . So
f is the image of g under the mapping and the mapping is onto. That is,
F : L2(R) → L2(R) is a Hilbert space isomorphism, as claimed.
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Theorem 4.11.14 (continued)
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Theorem 4.11.15

Theorem 4.11.15

Theorem 4.11.15. The Fourier transform is an unitary operator on L2(R).

Proof. First, note that F{g}(k) =
1√
2π

∫ ∞

−∞
e−ikxg(x) dx

=
1√
2π

∫ ∞

−∞
e ikxg(x) dx = F−1{g}(k). (∗)

Then

(F{f }, g) =
1√
2π

∫ ∞

−∞
F{f }g(x) dx by the definition of inner product

=
1√
2π

∫ ∞

−∞
f (x)F{g}(x) dx by Theorem 4.11.11

=
1√
2π

∫ ∞

−∞
f (x)F−1{g}(k) dx by (∗)

= (f ,F−1{g}) by the definition of inner product.

So F ∗F−1 and FF ∗ = F ∗F = I so that F is unitary, as claimed.
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