Advanced Differential Equations

Chapter 4. Linear Operators on Hilbert Spaces Section 4.11. The Fourier Transform—Proofs of Theorems

Table of contents

- Theorem 4.11.2
- 2 Theorem 4.11.3
- 3 Theorem 4.11.4. The Riemann-Lebesgue Theorem
- 4 Theorem 4.11.6
- 5 Theorem 4.11.7. Convolution Theorem
- 6 Theorem 4.11.8
- 7 Theorem 4.11.9. Parseval's Relation
- B Theorem 4.11.10
- Theorem 4.11.11. Weak Parseval's Relation
- 10 Lemma 4.11.1
 - 1) Theorem 4.11.12. Inversion of Fourier Transform on $L^2(\mathbb{R})$
 - 2 Theorem 4.11.13. General Persaval's Relation
 - Theorem 4.11.14. Plancherel's Theorem
 - Theorem 4.11.15

Theorem 4.11.2. The Fourier transform of an integrable function is a continuous function.

Proof. Let $f \in L^1(\mathbb{R})$. For any $k, h \in \mathbb{R}$ we have

$$\begin{aligned} |\hat{f}(k+h) - \hat{f}(k)| &= \left| \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (e^{-i(k+h)x} f(x) - e^{-ikx} f(x)) \, dx \right| \\ &= \frac{1}{\sqrt{2\pi}} \left| \int_{-\infty}^{\infty} e^{-ikx} (e^{-ihx} - 1) f(x) \, dx \right| \\ &\leq \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |e^{-ikx} - 1| |f(x)| \, dx \text{ since } |e^{-ikx}| = 1. \end{aligned}$$
(4.11.3)

Theorem 4.11.2. The Fourier transform of an integrable function is a continuous function.

Proof. Let $f \in L^1(\mathbb{R})$. For any $k, h \in \mathbb{R}$ we have

$$\hat{f}(k+h) - \hat{f}(k)| = \left| \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (e^{-i(k+h)x} f(x) - e^{-ikx} f(x)) \, dx \right|$$
$$= \frac{1}{\sqrt{2\pi}} \left| \int_{-\infty}^{\infty} e^{-ikx} (e^{-ihx} - 1) f(x) \, dx \right|$$
$$\leq \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |e^{-ikx} - 1| |f(x)| \, dx \text{ since } |e^{-ikx}| = 1. \quad (4.11.3)$$

Now $|e^{-ihx} - 1||f(x)| \le 2|f(x)|$ where f is integrable an $\lim_{h\to 0} |e^{-ihx} - 1| = 0$ for all $x \in \mathbb{R}$, so $\lim_{h\to 0} \frac{1}{\sqrt{2\pi}} |e^{-ihx} - 1||f(x)| dx$ by the Lebesgue Dominated Convergence Theorem, Theorem 2.8.4. That is, $\lim_{h\to 0} \hat{f}(k+h) = \hat{f}(k)$ and $\mathscr{F}(f) = \hat{f}$ is continuous at k. Since k is an arbitrary real number, then $\mathscr{F}(f) = \hat{f}$ is continuous on \mathbb{R} .

Theorem 4.11.2. The Fourier transform of an integrable function is a continuous function.

Proof. Let $f \in L^1(\mathbb{R})$. For any $k, h \in \mathbb{R}$ we have

$$\begin{aligned} |\hat{f}(k+h) - \hat{f}(k)| &= \left| \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (e^{-i(k+h)x} f(x) - e^{-ikx} f(x)) \, dx \right| \\ &= \frac{1}{\sqrt{2\pi}} \left| \int_{-\infty}^{\infty} e^{-ikx} (e^{-ihx} - 1) f(x) \, dx \right| \\ &\leq \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |e^{-ikx} - 1| |f(x)| \, dx \text{ since } |e^{-ikx}| = 1. \end{aligned}$$
(4.11.3)

Now $|e^{-ihx} - 1||f(x)| \le 2|f(x)|$ where f is integrable an $\lim_{h\to 0} |e^{-ihx} - 1| = 0$ for all $x \in \mathbb{R}$, so $\lim_{h\to 0} \frac{1}{\sqrt{2\pi}} |e^{-ihx} - 1||f(x)| dx$ by the Lebesgue Dominated Convergence Theorem, Theorem 2.8.4. That is, $\lim_{h\to 0} \hat{f}(k+h) = \hat{f}(k)$ and $\mathscr{F}(f) = \hat{f}$ is continuous at k. Since k is an arbitrary real number, then $\mathscr{F}(f) = \hat{f}$ is continuous on \mathbb{R} .

Theorem 4.11.3

Theorem 4.11.3. If $f_1, f_2, \ldots \in L^1(\mathbb{R})$ and $\int_{-\infty}^{\infty} |f_n(x) - f(x)| dx = ||f_n - f||_1 \to 0$ as $n \to \infty$ then the sequence of Fourier transforms $\{\hat{f}_n\}$ converges to \hat{f} uniformly on \mathbb{R} .

Proof. First,

$$|\hat{f}(k)| \le \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |e^{-ikx}f(x)| \, dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |f(x)| \, dx$$

for all $k \in \mathbb{R}$. So

$$\sup_{k\in\mathbb{R}}|\hat{f}_n(k)-\hat{f}(k)| \leq \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}|f_n(x)-f(x)|\,dx = \frac{1}{\sqrt{2\pi}}\|f_n-f\|_1.$$

Since $||f_n - f||_2 \to 0$ then $\sup_{k \in \mathbb{R}} |\hat{f}_n(k) = \hat{f}(k)| \to 0$ as $n \to \infty$ and hence $\hat{f}_n \to \hat{f}$ uniformly on \mathbb{R} .

Theorem 4.11.3

Theorem 4.11.3. If $f_1, f_2, \ldots \in L^1(\mathbb{R})$ and $\int_{-\infty}^{\infty} |f_n(x) - f(x)| \, dx = \|f_n - f\|_1 \to 0 \text{ as } n \to \infty \text{ then the sequence of}$ Fourier transforms $\{\hat{f}_n\}$ converges to \hat{f} uniformly on \mathbb{R} .

Proof. First,

$$|\hat{f}(k)| \leq rac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |e^{-ikx}f(x)| \, dx = rac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |f(x)| \, dx$$

for all $k \in \mathbb{R}$. So

$$\sup_{k\in\mathbb{R}}|\hat{f}_n(k)-\hat{f}(k)| \leq \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}|f_n(x)-f(x)|\,dx = \frac{1}{\sqrt{2\pi}}\|f_n-f\|_1.$$

Since $||f_n - f||_2 \to 0$ then $\sup_{k \in \mathbb{R}} |\hat{f}_n(k) = \hat{f}(k)| \to 0$ as $n \to \infty$ and hence $\hat{f}_n \to \hat{f}$ uniformly on \mathbb{R} .

Theorem 4.11.4. The Riemann-Lebesgue Theorem. If $f \in L^1(\mathbb{R})$ then $\lim_{|k|\to\infty} |\hat{f}(k)| = 0$.

Proof. Since $e^{-ikx} = -(-1)e^{-ikx} = -e^{-i\pi}e^{-ikx} = -e^{-ikx-i\pi}$ then

$$\hat{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} -e^{-ikx - i\pi} f(x) \, dx = \frac{-1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ik(x + \pi/k)} f(x) \, dx$$
$$= \frac{-1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx} f(x - \pi/k) \, dx.$$

Theorem 4.11.4. The Riemann-Lebesgue Theorem. If $f \in L^1(\mathbb{R})$ then $\lim_{|k|\to\infty} |\hat{f}(k)| = 0$.

Proof. Since $e^{-ikx} = -(-1)e^{-ikx} = -e^{-i\pi}e^{-ikx} = -e^{-ikx-i\pi}$ then

$$\hat{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} -e^{-ikx - i\pi} f(x) \, dx = \frac{-1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ik(x + \pi/k)} f(x) \, dx$$
$$= \frac{-1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx} f(x - \pi/k) \, dx.$$

Hence

$$\hat{f}(k) = \frac{1}{2}(\hat{f}(k) + \hat{f}(k))$$

$$= \frac{1}{2} \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx} f(x) \, dx - \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx} f(x - \pi/k) \, dx \right)$$
$$= \frac{1}{2} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx} (f(x) - f(x - \pi/k)) \, dx \dots$$

Theorem 4.11.4. The Riemann-Lebesgue Theorem. If $f \in L^1(\mathbb{R})$ then $\lim_{|k|\to\infty} |\hat{f}(k)| = 0$.

Proof. Since $e^{-ikx} = -(-1)e^{-ikx} = -e^{-i\pi}e^{-ikx} = -e^{-ikx-i\pi}$ then

$$\hat{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} -e^{-ikx - i\pi} f(x) \, dx = \frac{-1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ik(x + \pi/k)} f(x) \, dx$$

$$=\frac{1}{\sqrt{2\pi}}\int_{-\infty}e^{-ikx}f(x-\pi/k)\,dx.$$

Hence

$$\hat{f}(k) = \frac{1}{2}(\hat{f}(k) + \hat{f}(k))$$

$$= \frac{1}{2}\left(\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty} e^{-ikx}f(x)\,dx - \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty} e^{-ikx}f(x - \pi/k)\,dx\right)$$

$$= \frac{1}{2}\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty} e^{-ikx}(f(x) - f(x - \pi/k))\,dx\dots$$

Theorem 4.11.4 (continued)

Theorem 4.11.4. The Riemann-Lebesgue Theorem. If $f \in L^1(\mathbb{R})$ then $\lim_{|k|\to\infty} |\hat{f}(k)| = 0$.

Proof (continued).

...and so $|\hat{f}(k)| \leq \frac{1}{2\sqrt{2\pi}} \int_{-\infty}^{\infty} |f(x) - f(x - \pi/k)| dx$. Theorem 2.4.2 states: "If $f \in L^1(\mathbb{R})$, the $\lim_{t\to 0} \int_{-\infty}^{\infty} |f(x+t) - f(x)| dx = 0$." Since $f(x) - f(x - \pi/k) \in L^1(\mathbb{R})$, then by Theorem 2.4.2 $\lim_{k\to\infty} \int_{-\infty}^{\infty} |f(x + \pi/k) - f(x)| = 0$. Therefore, $\lim_{k\to\infty} |\hat{f}(k)| = 0$, as claimed.

Theorem 4.11.6

Theorem 4.11.6. If f is a continuous piecewise differentiable function, $f, f' \in L^1(\mathbb{R})$, and $\lim_{|x|\to\infty} f(x) = 0$ then $\mathscr{F}\{f'\} = ik\mathscr{F}\{f\}$.

Proof. Integration by parts gives

$$\mathcal{F}{f'} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f'(x) e^{-ikx} dx$$

$$= \frac{1}{\sqrt{2\pi}} f(x) e^{-ikx} |_{-\infty}^{\infty} - \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (-ik) f(x) e^{-ikx} dx$$

$$= 0 + \frac{ik}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-kx} f(x) dx \text{ since } \lim_{|x| \to \infty} f(x) = 0$$
because $f \in L^1(\mathbb{R})$ and f is continuous
$$= ik \mathcal{F}{f}.$$

Theorem 4.11.6

Theorem 4.11.6. If f is a continuous piecewise differentiable function, $f, f' \in L^1(\mathbb{R})$, and $\lim_{|x|\to\infty} f(x) = 0$ then $\mathscr{F}\{f'\} = ik\mathscr{F}\{f\}$.

Proof. Integration by parts gives

$$\mathcal{F}{f'} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f'(x) e^{-ikx} dx$$

$$= \frac{1}{\sqrt{2\pi}} f(x) e^{-ikx} |_{-\infty}^{\infty} - \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (-ik) f(x) e^{-ikx} dx$$

$$= 0 + \frac{ik}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-kx} f(x) dx \text{ since } \lim_{|x| \to \infty} f(x) = 0$$

because $f \in L^1(\mathbb{R})$ and f is continuous
$$= ik \mathcal{F}{f}.$$

Theorem 4.11.7. Convolution Theorem. Let $f, g \in L^1(\mathbb{R})$. Then $\mathscr{F}{f * g} = \mathscr{F}{f}\mathscr{F}{g}$. **Proof.** Let $f, g \in L^1(\mathbb{R})$ and h = f * g. Then $h \in L^1(\mathbb{R})$ by Theorem 2.15.1 (the proof of which is based on Fubini's Theorem) and so $\mathscr{F}(h)$ is defined. We have

$$\hat{h}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} h(x) e^{-ikx} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x-u)g(u) du \right) e^{-ikx} dx$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} g(u) \int_{-\infty}^{\infty} e^{-ikx} f(x) dx du$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} g(u) \int_{-\infty}^{\infty} e^{-ik(x+u)} f(x) dx du$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-iku}g(u) du \int_{-\infty}^{\infty} e^{-ikx} f(x) dx = \hat{g}(k)\hat{f}(k). \quad \Box$$

Theorem 4.11.7. Convolution Theorem. Let $f, g \in L^1(\mathbb{R})$. Then $\mathscr{F}{f * g} = \mathscr{F}{f}\mathscr{F}{g}$. **Proof.** Let $f, g \in L^1(\mathbb{R})$ and h = f * g. Then $h \in L^1(\mathbb{R})$ by Theorem 2.15.1 (the proof of which is based on Fubini's Theorem) and so $\mathscr{F}(h)$ is defined. We have

$$\begin{aligned} \hat{h}(k) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} h(x) e^{-ikx} dx \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x-u) g(u) du \right) e^{-ikx} dx \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} g(u) \int_{-\infty}^{\infty} e^{-ikx} f(x) dx du \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} g(u) \int_{-\infty}^{\infty} e^{-ik(x+u)} f(x) dx du \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-iku} g(u) du \int_{-\infty}^{\infty} e^{-ikx} f(x) dx = \hat{g}(k) \hat{f}(k). \end{aligned}$$

Theorem 4.11.8. Let f be a continuous function on \mathbb{R} vanishing outside a bounded interval. Then $\hat{f} = \in L^2(\mathbb{R})$ and $\|\hat{f}\|_2 = \|f\|_2$.

Proof. First, suppose f vanishes outside the interval $[-\pi, \pi]$. The sequence of functions $\varphi_n(x) = \frac{1}{\sqrt{2\pi}}e^{-inx}$ for $n \in \mathbb{Z}$ is an orthonormal sequence in $L^2([-\pi, \pi])$ (and also in $L^2(\mathbb{R})$), so by Parseval's Formula (Theorem 3.8.5) we get

$$||f||_{2}^{2} = \sum_{n=-\infty}^{\infty} \left| \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-inx} f(x) \, dx \right|^{2} = \sum_{n=-\infty}^{\infty} |\hat{f}(n)|^{2}.$$

Replacing f(x) with $e^{-\xi x} f(x)$ in the previous equality we get $||f||_2^2 = \sum_{n=-\infty}^{\infty} |\hat{f}(n+\xi)|^2$ (since $||f||_2^2 = ||e^{-i\xi x} f(x)||_2^2$).

Theorem 4.11.8. Let f be a continuous function on \mathbb{R} vanishing outside a bounded interval. Then $\hat{f} = \in L^2(\mathbb{R})$ and $\|\hat{f}\|_2 = \|f\|_2$.

Proof. First, suppose f vanishes outside the interval $[-\pi, \pi]$. The sequence of functions $\varphi_n(x) = \frac{1}{\sqrt{2\pi}}e^{-inx}$ for $n \in \mathbb{Z}$ is an orthonormal sequence in $L^2([-\pi, \pi])$ (and also in $L^2(\mathbb{R})$), so by Parseval's Formula (Theorem 3.8.5) we get

$$\|f\|_{2}^{2} = \sum_{n=-\infty}^{\infty} \left| \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-inx} f(x) \, dx \right|^{2} = \sum_{n=-\infty}^{\infty} |\hat{f}(n)|^{2}.$$

Replacing f(x) with $e^{-\xi x} f(x)$ in the previous equality we get $\|f\|_2^2 = \sum_{n=-\infty}^{\infty} |\hat{f}(n+\xi)|^2$ (since $\|f\|_2^2 = \|e^{-i\xi x} f(x)\|_2^2$).

Theorem 4.11.8 (continued 1)

Proof (continued). Integration of both sides with respect to ξ from 0 to 1 yields

$$\begin{split} \|f\|_{2}^{2} &= \sum_{n=-\infty}^{\infty} \int_{0}^{1} |\hat{f}(n+\xi)|^{2} d\xi \\ &= \cdots + \int_{0}^{1} |\hat{f}(-1+\xi)|^{2} d\xi + \int_{0}^{1} |\hat{f}(0+\xi)|^{2} d\xi \\ &+ \int_{0}^{1} |\hat{f}(1+\xi)|^{2} d\xi \cdots \\ &= \cdots + \int_{-1}^{0} |\hat{f}(\xi)|^{2} d\xi + \int_{0}^{1} |\hat{f}(\xi)|^{2} d\xi + \int_{1}^{2} |\hat{f}(\xi)|^{2} d\xi + \cdots \\ &= \int_{-\infty}^{\infty} |\hat{f}(\xi)|^{2} d\xi = \|f\|_{2}^{2}, \end{split}$$

as claimed (in the case that f vanishes outside $[-\pi,\pi]$).

Theorem 4.11.8 (continued 2)

Theorem 4.11.8. Let f be a continuous function on \mathbb{R} vanishing outside a bounded interval. Then $\hat{f} = \in L^2(\mathbb{R})$ and $\|\hat{f}\|_2 = \|f\|_2$.

Proof (continued). If f does not vanish outside $[-\pi, \pi]$, then we take a positive λ for which $g(x) = f(\lambda x)$ vanishes outside $[-\pi, \pi]$. Then $\hat{g}(k) = (1/\lambda)\hat{f}(k/\lambda)$ and, as argued above,

$$\|f\|_2^2 = \lambda \|g\|_2^2 = \lambda \|\hat{g}\|_2^2 = \lambda \int_{-\infty}^{\infty} \left|\frac{1}{\lambda}\hat{f}\left(\frac{\xi}{\lambda}\right)\right|^2 d\xi = \int_{-\infty}^{\infty} |\hat{f}(\xi)|^2 d\xi = \|\hat{f}\|_2^2,$$

as claimed in the general case.

Theorem 4.11.9. Parseval's Relation. If $f \in L^2(\mathbb{R})$ then $\|\hat{f}\|_2 = \|f\|_2$.

Proof. Let $\{\varphi_n\}$ be a sequence of continuous functions with compact support convergent to f in $L^2(\mathbb{R})$. Then by Theorem 4.11.8, $\|\hat{\varphi}_n\|_2 = \|\varphi_n\|_2$ for all $n \in \mathbb{N}$. Now

$$\begin{split} \|\hat{f}\|_{2} &= \left\| \lim_{n \to \infty} \hat{\varphi}_{n} \right\|_{2} \\ &= \left\| \lim_{n \to \infty} \|\hat{\varphi}_{n}\|_{2} \text{ since } \|\cdot\|_{2} \text{ is a continuous mapping into } \mathbb{R} \\ &= \left\| \lim_{n \to \infty} \|\varphi_{n}\|_{2} \\ &= \left\| \left\| \lim_{n \to \infty} \varphi_{n} \right\|_{2} \text{ since } \|\cdot\|_{2} \text{ is a continuous mapping into } \mathbb{R} \\ &= \|f\|_{2}, \end{split}$$

as claimed.

Theorem 4.11.9. Parseval's Relation. If $f \in L^2(\mathbb{R})$ then $\|\hat{f}\|_2 = \|f\|_2$.

Proof. Let $\{\varphi_n\}$ be a sequence of continuous functions with compact support convergent to f in $L^2(\mathbb{R})$. Then by Theorem 4.11.8, $\|\hat{\varphi}_n\|_2 = \|\varphi_n\|_2$ for all $n \in \mathbb{N}$. Now

$$\begin{split} |\hat{f}\|_2 &= \left\| \lim_{n \to \infty} \hat{\varphi}_n \right\|_2 \\ &= \lim_{n \to \infty} \|\hat{\varphi}_n\|_2 \text{ since } \|\cdot\|_2 \text{ is a continuous mapping into } \mathbb{R} \\ &= \lim_{n \to \infty} \|\varphi_n\|_2 \\ &= \left\| \lim_{n \to \infty} \varphi_n \right\|_2 \text{ since } \|\cdot\|_2 \text{ is a continuous mapping into } \mathbb{R} \\ &= \|f\|_2, \end{split}$$

as claimed.

Theorem 4.11.10. Let $f \in L^2(\mathbb{R})$. Then

$$\hat{f}(k) = \lim_{n \to \infty} \frac{1}{\sqrt{2\pi}} \int_{-n}^{n} e^{-ikx} f(x) \, dx$$

where the convergence is with respect to the norm in $L^2(\mathbb{R})$.

Proof. For
$$n \in \mathbb{N}$$
 define $f_n(x) = \begin{cases} f(x) & \text{if } |x| < n \\ 0 & \text{if } |x| \ge n. \end{cases}$ Then $|f - f_n||_2 \to 0$ as $n \to \infty$. Also,

$$\hat{f}_n = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx} f_n(x) \, dx = \frac{1}{\sqrt{2\pi}} \int_{-n}^{n} e^{-ikx} f(x) \, dx$$

since $f_n(x) = 0$ for $|x| \ge n$ and the claim follows.

Theorem 4.11.10. Let $f \in L^2(\mathbb{R})$. Then

$$\hat{f}(k) = \lim_{n \to \infty} \frac{1}{\sqrt{2\pi}} \int_{-n}^{n} e^{-ikx} f(x) \, dx$$

where the convergence is with respect to the norm in $L^2(\mathbb{R})$.

Proof. For
$$n \in \mathbb{N}$$
 define $f_n(x) = \begin{cases} f(x) & \text{if } |x| < n \\ 0 & \text{if } |x| \ge n. \end{cases}$ Then $|f - f_n||_2 \to 0$ as $n \to \infty$. Also,

$$\hat{f}_n = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx} f_n(x) \, dx = \frac{1}{\sqrt{2\pi}} \int_{-n}^{n} e^{-ikx} f(x) \, dx$$

since $f_n(x) = 0$ for $|x| \ge n$ and the claim follows.

Theorem 4.11.11. Weak Parseval's Relation. If $f, g \in L^2(\mathbb{R})$ then

$$\int_{-\infty}^{\infty} f(x)\hat{g}(x)\,dx = \int_{-\infty}^{\infty} \hat{f}(x)g(x)\,dx.$$

Proof. For $n \in \mathbb{Z}$ define

$$f_n(x) = \begin{cases} f(x) & \text{if } |x| < n \\ 0 & \text{if } |x| \ge n \end{cases} \text{ and } g_n(x) = \begin{cases} g(x) & \text{if } |x| < n \\ 0 & \text{if } |x| \ge n. \end{cases}$$

Now
$$\hat{f}_m(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ix\xi} f_m(\xi) d\xi$$
, so

$$\int_{-\infty}^{\infty} \hat{f}_m(x) g_n(x) dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g_n(x) \int_{-\infty}^{\infty} e^{-in\xi} f_m(\xi) d\xi dx.$$

Theorem 4.11.11. Weak Parseval's Relation. If $f, g \in L^2(\mathbb{R})$ then

$$\int_{-\infty}^{\infty} f(x)\hat{g}(x)\,dx = \int_{-\infty}^{\infty} \hat{f}(x)g(x)\,dx.$$

Proof. For $n \in \mathbb{Z}$ define

$$f_n(x) = \begin{cases} f(x) & \text{if } |x| < n \\ 0 & \text{if } |x| \ge n \end{cases} \text{ and } g_n(x) = \begin{cases} g(x) & \text{if } |x| < n \\ 0 & \text{if } |x| \ge n. \end{cases}$$

Now
$$\hat{f}_m(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ix\xi} f_m(\xi) d\xi$$
, so

$$\int_{-\infty}^{\infty} \hat{f}_m(x) g_n(x) dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g_n(x) \int_{-\infty}^{\infty} e^{-in\xi} f_m(\xi) d\xi dx.$$

Theorem 4.11.11 (continued 1)

Proof (continued). The function of x and ξ , $e^{-inx}g_n(x)f_m(x)$ is integrable over \mathbb{R}^2 . So Fubini's Theorem (Theorem 2.14.1, which allows us to change the order of integration in a double integral, with $f(x,y) = e^{-in\xi}g_n(x)f_m(\xi)$ and $F(x) = \int_{-\infty}^{\infty} e^{-in\xi}g_x(x)f_m(\xi) d\xi$) we have

$$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)=\int_{-\infty}^{\infty}F(x)\,dx=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-in\xi}g_n(x)f_m(\xi)\,d\xi\,dx<\infty$$

and so

$$\int_{-\infty}^{\infty} \hat{f}_m g_n(x) \, dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g_n(x) \int_{-\infty}^{\infty} e^{-ix\xi} f_m(\xi) \, d\xi \, dx$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-ix\xi} g_n(x) f_m(\xi) \, d\xi \, dx$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-ix\xi} g_n(x) f_m(\xi) \, dx d\xi$$

Theorem 4.11.11 (continued 2)

Proof (continued). ...

$$\int_{-\infty}^{\infty} \hat{f}_m g_n(x) \, dx$$

$$=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f_m(\xi)\int_{-\infty}^{\infty}e^{-ix\xi}g_n(x)\,dx\,d\xi=\int_{-\infty}^{\infty}f_m(\xi)\hat{g}(\xi)\,d\xi.$$

Since $\|g - g_n\|_2 \to 0$ and $\|\hat{g} - \hat{g}_n\| \to 0$, then be letting $n \to \infty$ we have

$$\int_{-\infty}^{\infty} \hat{f}_m(x)g(x)\,dx = \int_{-\infty}^{\infty} f_m(x)\hat{g}(x)\,dx$$

by the continuity of the inner product (or continuity of the norm $\|\cdot\|_2$). Similarly, letting $m \to \infty$ we have

$$\int_{-\infty}^{\infty} \hat{f}(x)g(x)\,dx = \int_{-\infty}^{\infty} f(x)\hat{g}(x)\,dx,$$

as claimed.

Lemma 4.11.1

Lemma 4.11.1. Let $f \in L^2(\mathbb{R})$ and let $g = \overline{\hat{f}}$. Then $f = \overline{\hat{g}}$.

Proof. Using the inner product on $L^2(\mathbb{R})$ we have

$$(f,\overline{g}) = \int_{-\infty}^{\infty} f(x)\overline{g}(x) dx$$

= $\int_{-\infty}^{\infty} \hat{f}(x)\overline{g}(x) dx$ by Theorem 4.11.11, Weak Parseval's Relation
= $\int_{-\infty}^{\infty} \hat{f}(x)\hat{f}(x) dx$ since $g = \overline{f}$ or $\overline{g} = \hat{f}$ by hypothesis
= $(\hat{f},\hat{f}) = \|\hat{f}\|_{2}^{2}$
= $\|f\|_{2}^{2}$ by Theorem 4.11.9, Parseval's Relation.

Lemma 4.11.1

Lemma 4.11.1. Let $f \in L^2(\mathbb{R})$ and let $g = \overline{\hat{f}}$. Then $f = \overline{\hat{g}}$.

Proof. Using the inner product on $L^2(\mathbb{R})$ we have

$$(f,\overline{g}) = \int_{-\infty}^{\infty} f(x)\overline{g}(x) dx$$

$$= \int_{-\infty}^{\infty} \widehat{f}(x)\overline{g}(x) dx \text{ by Theorem 4.11.11, Weak Parseval's Relation}$$

$$= \int_{-\infty}^{\infty} \widehat{f}(x)\widehat{f}(x) dx \text{ since } g = \overline{f} \text{ or } \overline{g} = \widehat{f} \text{ by hypothesis}$$

$$= (\widehat{f},\widehat{f}) = \|\widehat{f}\|_{2}^{2}$$

$$= \|f\|_{2}^{2} \text{ by Theorem 4.11.9, Parseval's Relation.}$$
Since $\|f\|_{2}^{2}$ is real then $\overline{(f,\overline{g})} = \|f\|_{2}^{2}$. By Theorem 4.11.9 (Parseval's

Relation), $\|\hat{g}\|_{2}^{2} = \|g\|_{2}^{2}$ and $\|\hat{f}\|_{2}^{2} = \|f\|_{2}^{2}$, and since $g = \overline{\hat{f}}$ by hypothesis then $\|g\|_{2} = \|\overline{\hat{f}}\|_{2} = \|\hat{f}\|_{2}$ so that $\|\hat{g}\|_{2}^{2} = \|g\|_{2}^{2} = \|f\|_{2}^{2} = \|f\|_{2}^{2}$.

Lemma 4.11.1

Lemma 4.11.1. Let $f \in L^2(\mathbb{R})$ and let $g = \overline{f}$. Then $f = \overline{\hat{g}}$.

Proof. Using the inner product on $L^2(\mathbb{R})$ we have

$$\begin{aligned} (f,\overline{g}) &= \int_{-\infty}^{\infty} f(x)\overline{g}(x) \, dx \\ &= \int_{-\infty}^{\infty} \widehat{f}(x)\overline{g}(x) \, dx \text{ by Theorem 4.11.11, Weak Parseval's Relation} \\ &= \int_{-\infty}^{\infty} \widehat{f}(x)\widehat{f}(x) \, dx \text{ since } g = \overline{f} \text{ or } \overline{g} = \widehat{f} \text{ by hypothesis} \\ &= (\widehat{f},\widehat{f}) = \|\widehat{f}\|_2^2 \\ &= \|f\|_2^2 \text{ by Theorem 4.11.9, Parseval's Relation.} \end{aligned}$$
Since $\|f\|_2^2$ is real then $\overline{(f,\overline{g})} = \|f\|_2^2$. By Theorem 4.11.9 (Parseval's Relation), $\|\widehat{g}\|_2^2 = \|g\|_2^2$ and $\|\widehat{f}\|_2^2 = \|f\|_2^2$, and since $g = \overline{\widehat{f}}$ by hypothesis then $\|g\|_2 = \|\widehat{f}\|_2 = \|\widehat{f}\|_2$ so that $\|\widehat{g}\|_2^2 = \|g\|_2^2 = \|\widehat{f}\|_2^2 = \|f\|_2^2. \end{aligned}$

Lemma 4.11.1 (continued)

Lemma 4.11.1. Let $f \in L^2(\mathbb{R})$ and let $g = \overline{f}$. Then $f = \overline{\hat{g}}$.

Proof (continued). Finally,

 $\|f - \overline{\hat{g}}\|_2^2 = (f - \overline{\hat{g}}, f - \overline{\hat{g}}) = (f, f) - (\overline{\hat{g}}, f) - (f, \overline{\hat{g}}) + (\overline{\hat{g}}, \overline{\hat{g}})$

 $= \|f\|_{2}^{2} - \overline{(f,\overline{\hat{g}})} - (f,\overline{\hat{g}}) + \|\overline{\hat{g}}\|_{2}^{2} = \|f\|_{2}^{2} - \|f\|_{2}^{2} - \|f\|_{2}^{2} + \|f\|_{2}^{2} = 0$

since $\overline{(f,\overline{\hat{g}})} = \|f\|_2^2$, $(f,\overline{\hat{g}}) = \|f\|_2^2$, and $\|\overline{\hat{g}}\|_2 = \|\hat{g}\|_2 = \|f\|_2$. Therefore, $f = \overline{\hat{g}}$, as claimed.

Lemma 4.11.1 (continued)

Lemma 4.11.1. Let $f \in L^2(\mathbb{R})$ and let $g = \overline{\hat{f}}$. Then $f = \overline{\hat{g}}$.

Proof (continued). Finally,

$$\|f - \overline{\hat{g}}\|_{2}^{2} = (f - \overline{\hat{g}}, f - \overline{\hat{g}}) = (f, f) - (\overline{\hat{g}}, f) - (f, \overline{\hat{g}}) + (\overline{\hat{g}}, \overline{\hat{g}})$$
$$= \|f\|_{2}^{2} - \overline{(f, \overline{\hat{g}})} - (f, \overline{\hat{g}}) + \|\overline{\hat{g}}\|_{2}^{2} = \|f\|_{2}^{2} - \|f\|_{2}^{2} - \|f\|_{2}^{2} + \|f\|_{2}^{2} = 0$$
since $\overline{(f, \overline{\hat{g}})} = \|f\|_{2}^{2}, (f, \overline{\hat{g}}) = \|f\|_{2}^{2}$, and $\|\overline{\hat{g}}\|_{2} = \|\hat{g}\|_{2} = \|f\|_{2}$. Therefore, $f = \overline{\hat{g}}$, as claimed.

f

Theorem 4.11.12. Inversion of Fourier Transform on $L^2(\mathbb{R})$. Let $f \in L^2(\mathbb{R})$. Then

$$f(x) = \lim_{n \to \infty} \frac{1}{\sqrt{2\pi}} \int_{-n}^{n} e^{ikx} \hat{f}(k) \, dk$$

where the convergence is with respect to the norm in $L^2(\mathbb{R})$.

Proof. Let $f \in L^2(\mathbb{R})$. Define $g = \overline{f}$. Then by Lemma 4.11.1,

$$f(x) = \overline{\hat{g}}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx} g(k) \, dk = \frac{1}{\sqrt{2\pi}} \lim_{n \to \infty} \int_{-n}^{n} e^{-ikx} g(k) \, dk$$
$$= \frac{1}{\sqrt{2\pi}} \lim_{n \to \infty} \int_{-n}^{n} e^{ikx} \overline{g}(k) \, dk = \frac{1}{\sqrt{2\pi}} \lim_{n \to \infty} \int_{-n}^{n} e^{-kx} \widehat{f}(k) \, dk,$$

as claimed.

Theorem 4.11.12. Inversion of Fourier Transform on $L^2(\mathbb{R})$. Let $f \in L^2(\mathbb{R})$. Then

$$f(x) = \lim_{n \to \infty} \frac{1}{\sqrt{2\pi}} \int_{-n}^{n} e^{ikx} \hat{f}(k) \, dk$$

where the convergence is with respect to the norm in $L^2(\mathbb{R})$.

Proof. Let $f \in L^2(\mathbb{R})$. Define $g = \overline{\hat{f}}$. Then by Lemma 4.11.1,

$$f(x) = \overline{\hat{g}}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx} g(k) \, dk = \frac{1}{\sqrt{2\pi}} \lim_{n \to \infty} \int_{-n}^{n} e^{-ikx} g(k) \, dk$$
$$= \frac{1}{\sqrt{2\pi}} \lim_{n \to \infty} \int_{-n}^{n} e^{ikx} \overline{g}(k) \, dk = \frac{1}{\sqrt{2\pi}} \lim_{n \to \infty} \int_{-n}^{n} e^{-kx} \widehat{f}(k) \, dk,$$

as claimed.

Theorem 4.11.13. General Persaval's Relation. If $f, g \in L^2(\mathbb{R})$, then

$$\int_{-\infty}^{\infty} f(x)\overline{g}(x)\,dx = \int_{-\infty}^{\infty} \hat{f}(k)\overline{\hat{g}}\,dk.$$

Proof. By the polarization identity states (see Exercise 3.13.9)

$$(f,g) = rac{1}{4}(\|f+g\|_2^2 - \|f-g\|_2^2 + i\|f_ig\|_2^2 - i\|f-ig\|_2^2).$$

 $\int_{-\infty}^{\infty} f(x)\overline{g}(x) \, dx = (f,g) \text{ by definition of inner product on } L^2(\mathbb{R})$

$$= \frac{1}{4} (\|f + g\|_2^2 - \|f - g\|_2^2 + i\|f - ig\|_2^2 - i\|f - ig\|_2^2)$$

by the polarization identity

Theorem 4.11.13. General Persaval's Relation. If $f, g \in L^2(\mathbb{R})$, then

$$\int_{-\infty}^{\infty} f(x)\overline{g}(x)\,dx = \int_{-\infty}^{\infty} \widehat{f}(k)\overline{\widehat{g}}\,dk.$$

Proof. By the polarization identity states (see Exercise 3.13.9)

$$(f,g) = rac{1}{4}(\|f+g\|_2^2 - \|f-g\|_2^2 + i\|f_ig\|_2^2 - i\|f-ig\|_2^2).$$

 $\int_{-\infty}^{\infty} f(x)\overline{g}(x) \, dx = (f,g) \text{ by definition of inner product on } L^2(\mathbb{R})$

$$= \frac{1}{4}(\|f+g\|_2^2 - \|f-g\|_2^2 + i\|f-ig\|_2^2 - i\|f-ig\|_2^2)$$

by the polarization identity

So

Theorem 4.11.13 (continued)

Theorem 4.11.13. General Persaval's Relation. If $f, g \in L^2(\mathbb{R})$, then

$$\int_{-\infty}^{\infty} f(x)\overline{g}(x)\,dx = \int_{-\infty}^{\infty} \hat{f}(k)\overline{\hat{g}}\,dk.$$

Proof (continued). ...

$$\int_{-\infty}^{\infty} f(x)\overline{g}(x) dx = \frac{1}{4} (\|\hat{f} + \hat{g}\|_2^2 - \|\hat{f} - \hat{g}\|_2^2 + i\|\hat{f} - i\hat{g}\|_2^2 - i\|\hat{f} - i\hat{g}\|_2^2)$$

since \mathscr{F} is linear (by Theorem 4.11.1)
and by Theorem 4.11.9, Parseval's Relation
 $= (\hat{f}, \hat{g})$ by the polarization identity
 $= \int_{-\infty}^{\infty} \hat{f}(x)\overline{\hat{g}}(x) dx$ by the definition of inner product,

as claimed.

Theorem 4.11.14. Plancherel's Theorem. For every $f \in L^2(\mathbb{R})$ there exists $\hat{f} \in L^2(\mathbb{R})$ such that: (a) If $f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ then $\hat{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx} f(x) dx$. (b) $\left\| \hat{f}(k) - \frac{1}{\sqrt{2\pi}} \int_{-n}^{n} e^{-ikx} f(x) \, dx \right\|_{2} \to 0$ and $\left\|f(k)-\frac{1}{\sqrt{2\pi}}\int_{-\pi}^{n}e^{ikx}\hat{f}(x)\,dx\right\|_{2}^{n^{2}}\rightarrow 0 \text{ as } n\rightarrow\infty.$ (c) $||f||_2 = ||\hat{f}||_2$. (d) The mapping $f \mapsto \hat{f}$ is a Hilbert space isomorphism of $L^2(\mathbb{R})$ onto $L^2(\mathbb{R})$.

Proof. We still need to prove part (d).

We know that \mathscr{F} is linear by Theorem 4.11.1. We know that the mapping preserves inner products by the General Parseval's Relation, Theorem 4.11.13.

Theorem 4.11.14. Plancherel's Theorem. For every $f \in L^2(\mathbb{R})$ there exists $\hat{f} \in L^2(\mathbb{R})$ such that: (a) If $f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ then $\hat{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx} f(x) dx$. (b) $\left\| \hat{f}(k) - \frac{1}{\sqrt{2\pi}} \int_{-n}^{n} e^{-ikx} f(x) dx \right\|_{2} \to 0$ and $\left\|f(k)-\frac{1}{\sqrt{2\pi}}\int_{-\pi}^{\pi}e^{ikx}\hat{f}(x)\,dx\right\|_{\infty}^{n}\to 0 \text{ as } n\to\infty.$ (c) $||f||_2 = ||\hat{f}||_2$. (d) The mapping $f \mapsto \hat{f}$ is a Hilbert space isomorphism of $L^2(\mathbb{R})$ onto $L^2(\mathbb{R})$.

Proof. We still need to prove part (d).

We know that \mathscr{F} is linear by Theorem 4.11.1. We know that the mapping preserves inner products by the General Parseval's Relation, Theorem 4.11.13.

Theorem 4.11.14 (continued)

Proof (continued). If $\hat{f} = \hat{g}$ then

$$\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{-ikx}f(x)\,dx=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{-ikx}g(x)\,dx$$

or $\int_{-\infty}^{\infty} e^{-ikx}(f(x) - g(x)) dx = 0$ for all $k \in \mathbb{R}$, and hence f(x) = g(x)almost everywhere (i.e., f = g in $L^2(\mathbb{R})$). For onto, let $f \in L^2(\mathbb{R})$ and define $h = \overline{f}$ and $g = \overline{f}$. By Lemma 4.11.1, $\overline{f} = h = \overline{g}$, so that $f = \widehat{g}$. So f is the image of g under the mapping and the mapping is onto. That is, $\mathscr{F} : L^2(\mathbb{R}) \to L^2(\mathbb{R})$ is a Hilbert space isomorphism, as claimed. Theorem 4.11.14 (continued)

Proof (continued). If $\hat{f} = \hat{g}$ then

$$\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{-ikx}f(x)\,dx=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{-ikx}g(x)\,dx$$

or $\int_{-\infty}^{\infty} e^{-ikx}(f(x) - g(x)) dx = 0$ for all $k \in \mathbb{R}$, and hence f(x) = g(x)almost everywhere (i.e., f = g in $L^2(\mathbb{R})$). For onto, let $f \in L^2(\mathbb{R})$ and define $h = \overline{f}$ and $g = \overline{f}$. By Lemma 4.11.1, $\overline{f} = h = \overline{g}$, so that $f = \widehat{g}$. So f is the image of g under the mapping and the mapping is onto. That is, $\mathscr{F}: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ is a Hilbert space isomorphism, as claimed.

Theorem 4.11.15

Theorem 4.11.15. The Fourier transform is an unitary operator on $L^2(\mathbb{R})$.

Proof. First, note that $\mathscr{F}\{\overline{g}\}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx} \overline{g}(x) dx$

$$=\frac{1}{\sqrt{2\pi}}\overline{\int_{-\infty}^{\infty}}e^{ikx}g(x)\,dx=\overline{\mathscr{F}^{-1}\{g\}(k)}.\quad(*)$$

Then

$$(\mathscr{F}{f},g) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \mathscr{F}{f}\overline{g}(x) dx \text{ by the definition of inner product}$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)\mathscr{F}{\overline{g}}(x) dx \text{ by Theorem 4.11.11}$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)\overline{\mathscr{F}^{-1}{g}(k)} dx \text{ by } (*)$$
$$= (f,\mathscr{F}^{-1}{g}) \text{ by the definition of inner product.}$$
So $\mathscr{F}^*\mathscr{F}^{-1}$ and $\mathscr{F}\mathscr{F}^* = \mathscr{F}^*\mathscr{F} = \mathcal{I}$ so that \mathscr{F} is unitary, as claimed. \Box

Theorem 4.11.15

Theorem 4.11.15. The Fourier transform is an unitary operator on $L^2(\mathbb{R})$.

Proof. First, note that
$$\mathscr{F}\{\overline{g}\}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx} \overline{g}(x) dx$$
$$= \frac{1}{\sqrt{2\pi}} \overline{\int_{-\infty}^{\infty} e^{ikx} g(x) dx} = \overline{\mathscr{F}^{-1}\{g\}(k)}. \quad (*)$$

Then

$$(\mathscr{F}{f},g) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \mathscr{F}{f}\overline{g}(x) dx \text{ by the definition of inner product}$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)\mathscr{F}{\overline{g}}(x) dx \text{ by Theorem 4.11.11}$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)\overline{\mathscr{F}^{-1}{g}(k)} dx \text{ by } (*)$$
$$= (f,\mathscr{F}^{-1}{g}) \text{ by the definition of inner product.}$$
So $\mathscr{F}^*\mathscr{F}^{-1}$ and $\mathscr{F}\mathscr{F}^* = \mathscr{F}^*\mathscr{F} = \mathcal{I}$ so that \mathscr{F} is unitary, as claimed.
() Advanced Differential Equations October 12, 2019 24/24