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Theorem 4.4.2

Theorem 4.4.2. Let A be a bounded linear operator on a Hilbert space.
Then operators T; = A*A and T, = A+ A* are self adjoint.
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Proof. We have
(Tix,y) = (A"Ax,y) = Ax, Ay) = (x, A"Ay),
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Theorem 4.4.2. Let A be a bounded linear operator on a Hilbert space.
Then operators T; = A*A and T, = A+ A* are self adjoint.

Proof. We have
(Tix,y) = (A"Ax,y) = Ax, Ay) = (x, A"Ay),

so T1 = A*A is self adjoint.
Also
(Tox,y) = ((A+ A%)x,y) = (Ax+ A"x, y) = (Ax,y) + (A'x, y)
= (. Axy)+ (6, Ay) = (x, Axy + Ay) = (x, (A" + A)y) = (x, (A+A")y),

so To = A+ A* is self adjoint. O
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Theorem 4.4.3

Theorem 4.4.3. The product of two self adjoint operators is self adjoint if
and only if the operators commute.
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Theorem 4.4.3

Theorem 4.4.3. The product of two self adjoint operators is self adjoint if
and only if the operators commute.

Proof. Let A and B be self adjoint. Then

(ABx,y) = (Bx,A*y) = (x, B*A%y) = (x, BAy)

since A= A* and B = B*. So if AB = BA then AB is self adjoint.
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Theorem 4.4.3

Theorem 4.4.3. The product of two self adjoint operators is self adjoint if
and only if the operators commute.

Proof. Let A and B be self adjoint. Then
(ABx,y) = (Bx,A"y) = (x, B*"A%y) = (x, BAy)

since A= A* and B = B*. So if AB = BA then AB is self adjoint.

Conversely, if AB is self adjoint then, as above,

(AB) = (AB)* = B*A* = BA.
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Theorem 4.4.4

Theorem 4.4.4. Every bounded linear operator T on a Hilbert space has
a representation T = A + iB where A and B are self adjoint. Also,
T =A-iB.
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Theorem 4.4.4

Theorem 4.4.4. Every bounded linear operator T on a Hilbert space has

a representation T = A + iB where A and B are self adjoint. Also,
T =A-iB.

Proof. Let T be a bounded linear operator. Define A= (T + T*) and
B = %(T — T%). By Theorem 4.4.2, A and B are self adjoint. Also

(Tx,y) = ((A+iB)x,y) = (Ax,y) +i(Bx,y) = (x, A"y) + i(x, B*y)

= (x, (A" = iB%)y) = (x,(A = iB)y).
So T* = A—iB.
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