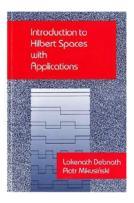
Advanced Differential Equations

Chapter 4. Linear Operators on Hilbert Spaces

Section 4.5. Invertible, Normal, Isometric, and Unitary Operators—Proofs of Theorems



Advanced Differential Equations

April 22, 2019

Advanced Differential Equations

April 22, 2019 3 / 5

Theorem 4.5.2

Theorem 4.5.2. Linear operator A is invertible if and only if Ax = 0implies x = 0.

Proof. First if A is invertible and Ax = 0 then $x = A^{-1}Ax = A^{-1}0 = 0$ (since A^{-1} is linear). Conversely assume Ax = 0 implies x = 0. If $Ax_1 = Ax_2$ then $A(x_1 - x_2) = 0$ and so $x_1 - x_2 = 0$ and $x_1 = x_2$. Therefore A is one to one and so invertible.

Theorem 4.5.1

Theorem 4.5.1. The inverse of a linear operator is linear.

Proof. For $x, y \in \mathcal{R}(A)$ and $\alpha, \beta \in \mathbb{C}$ we have

$$A^{-1}(\alpha x + \beta y) = A^{-1}(\alpha A A^{-1} x + \beta A A^{-1} y)$$

$$= A^{-1}A(\alpha A^{-1}x + \beta A^{-1}y) = \alpha A^{-1}x + \beta A^{-1}y.$$

So A^{-1} is linear.

Theorem 4.5.9

Theorem 4.5.9. A bounded linear operator T on a Hilbert space H is isometric if and only if $T^*T = \mathcal{I}$ on H.

Proof. If T is isometric then for all $x \in H$, $||Tx||^2 = ||x||^2$ and so

$$(T^*Tx, x) = (Tx, Tx) = ||Tx||^2 = ||x||^2 = (x, x).$$

So by Corollary 4.3.1, $T^*T = \mathcal{I}$.

Conversely, if $T^*T = \mathcal{I}$ then

$$||Tx|| = \sqrt{(Tx, Tx)} = \sqrt{(T^*Tx, x)} = \sqrt{(x, x)} = ||x||.$$

Advanced Differential Equations