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Theorem 4.5.2

Theorem 4.5.2. Linear operator A is invertible if and only if Ax =0
implies x = 0.

Proof. First if A is invertible and Ax =0 then x = A" 1Ax = A"10=0
(since A=! is linear). Conversely assume Ax = 0 implies x = 0. If

Ax; = Axp then A(x; — x2) = 0 and so x; — xo = 0 and x; = x». Therefore
A is one to one and so invertible. O
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Theorem 4.5.1

Theorem 4.5.1. The inverse of a linear operator is linear.

Proof. For x,y € R(A) and «, 3 € C we have
A ax + By) = A HaAA Ix + BAALy)

=ATA(QA x4+ BATy) = aA Ix + AT Yy,

So A~ is linear. O
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Theorem 4.5.9

Theorem 4.5.9. A bounded linear operator T on a Hilbert space H is
isometric if and only if T*T =7 on H.

Proof. If T is isometric then for all x € H, || Tx||?> = ||x]|? and so
(T*Tx,x) = (Tx, Tx) = | Tx||? = |Ix]I* = (x,%).

So by Corollary 4.3.1, T*T =1.
Conversely, if T*T = T then

ITx]l = V/(Tx, Tx) = V(T* Tx, x) = V/(x,x) = |Ix].
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