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Chapter 4. Linear Operators on Hilbert Spaces
Section 4.5. Invertible, Normal, Isometric, and Unitary Operators—Proofs

of Theorems
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Theorem 4.5.1

Theorem 4.5.1

Theorem 4.5.1. The inverse of a linear operator is linear.

Proof. For x , y ∈ R(A) and α, β ∈ C we have

A−1(αx + βy) = A−1(αAA−1x + βAA−1y)

= A−1A(αA−1x + βA−1y) = αA−1x + βA−1y .

So A−1 is linear.
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Theorem 4.5.2

Theorem 4.5.2

Theorem 4.5.2. Linear operator A is invertible if and only if Ax = 0
implies x = 0.

Proof. First if A is invertible and Ax = 0 then x = A−1Ax = A−10 = 0
(since A−1 is linear). Conversely assume Ax = 0 implies x = 0. If
Ax1 = Ax2 then A(x1 − x2) = 0 and so x1 − x2 = 0 and x1 = x2. Therefore
A is one to one and so invertible.

() Advanced Differential Equations April 22, 2019 4 / 5



Theorem 4.5.2

Theorem 4.5.2

Theorem 4.5.2. Linear operator A is invertible if and only if Ax = 0
implies x = 0.

Proof. First if A is invertible and Ax = 0 then x = A−1Ax = A−10 = 0
(since A−1 is linear). Conversely assume Ax = 0 implies x = 0. If
Ax1 = Ax2 then A(x1 − x2) = 0 and so x1 − x2 = 0 and x1 = x2. Therefore
A is one to one and so invertible.

() Advanced Differential Equations April 22, 2019 4 / 5



Theorem 4.5.9

Theorem 4.5.9

Theorem 4.5.9. A bounded linear operator T on a Hilbert space H is
isometric if and only if T ∗T = I on H.

Proof. If T is isometric then for all x ∈ H, ‖Tx‖2 = ‖x‖2 and so

(T ∗Tx , x) = (Tx ,Tx) = ‖Tx‖2 = ‖x‖2 = (x , x).

So by Corollary 4.3.1, T ∗T = I.

Conversely, if T ∗T = I then

‖Tx‖ =
√

(Tx ,Tx) =
√

(T ∗Tx , x) =
√

(x , x) = ‖x‖.
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