Advanced Differential Equations

Chapter 4. Linear Operators on Hilbert Spaces Section 4.6. Positive Operators—Proofs of Theorems

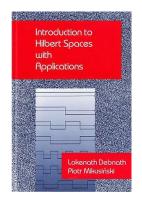


Table of contents

Theorem 4.6.1. For any bounded linear operator A, A^*A and AA^* are positive.

Proof. For all $x \in H$,

$$(A^*Ax, x) = (Ax, Ax) = ||Ax||^2 \ge 0$$

and

$$(AA^*x, x) = (A^*x, A^*x) = ||A^*A||^2 \ge 0.$$

Theorem 4.6.1. For any bounded linear operator A, A^*A and AA^* are positive.

Proof. For all $x \in H$,

$$(A^*Ax, x) = (Ax, Ax) = ||Ax||^2 \ge 0$$

and

$$(AA^*x, x) = (A^*x, A^*x) = ||A^*A||^2 \ge 0.$$

Theorem 4.6.2. If A is invertible and positive then A^{-1} is positive.

Proof. If $y \in \mathcal{D}(A^{-1})$ then y = Ax for some $x \in H$ and $(A^{-1}y, y) = (A^{-1}Ax, Ax) = (x, Ax) \ge 0.$

Theorem 4.6.2. If A is invertible and positive then A^{-1} is positive.

Proof. If $y \in \mathcal{D}(A^{-1})$ then y = Ax for some $x \in H$ and $(A^{-1}y, y) = (A^{-1}Ax, Ax) = (x, Ax) \ge 0.$

