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Chapter 4. Linear Operators on Hilbert Spaces
Section 4.6. Positive Operators—Proofs of Theorems
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Theorem 4.6.1

Theorem 4.6.1

Theorem 4.6.1. For any bounded linear operator A, A∗A and AA∗ are
positive.

Proof. For all x ∈ H,

(A∗Ax , x) = (Ax ,Ax) = ‖Ax‖2 ≥ 0

and
(AA∗x , x) = (A∗x ,A∗x) = ‖A∗A‖2 ≥ 0.
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Theorem 4.6.2

Theorem 4.6.2

Theorem 4.6.2. If A is invertible and positive then A−1 is positive.

Proof. If y ∈ D(A−1) then y = Ax for some x ∈ H and

(A−1y , y) = (A−1Ax ,Ax) = (x ,Ax) ≥ 0.
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