Advanced Differential Equations

Chapter 4. Linear Operators on Hilbert Spaces Section 4.9. Eigenvalues and Eigenvectors—Proofs of Theorems

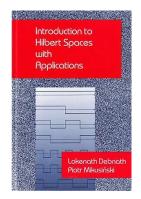


Table of contents

- Theorem 4.9.2
- 2 Theorem 4.9.3
- 3 Theorem 4.9.4
- 4 Theorem 4.9.5
- 5 Theorem 4.9.6
- 6 Theorem 4.9.7

Theorem 4.9.2

Theorem 4.9.2. Let T be an invertible linear operator on E and let A be a linear operator on E. Then A and TAT^{-1} have the same eigenvalues.

Proof. Let λ be an eigenvalue of A. Then for some $u \neq 0$ we have $Au = \lambda u$. Since T^{-1} exists, $Tu \neq 0$ and

$$TAT^{-1}\underbrace{(Tu)}_{v} = TAu = T\lambda u = \lambda \underbrace{Tu}_{v}.$$

So λ is an eigenvalue of TAT^{-1} .

Theorem 4.9.2

Theorem 4.9.2. Let T be an invertible linear operator on E and let A be a linear operator on E. Then A and TAT^{-1} have the same eigenvalues.

Proof. Let λ be an eigenvalue of A. Then for some $u \neq 0$ we have $Au = \lambda u$. Since T^{-1} exists, $Tu \neq 0$ and

$$TAT^{-1}\underbrace{(Tu)}_{v} = TAu = T\lambda u = \lambda \underbrace{Tu}_{v}.$$

So λ is an eigenvalue of TAT^{-1} .

Now suppose λ is an eigenvalue of TAT^{-1} Then for some $u \neq 0$ we have $TAT^{-1}u = \lambda u$ wher $u = Tv \in E$. Then

$$Av = T^{-1}(TAT^{-1})(Tv = T^{-1}(TAT^{-1})u = T^{-1}\lambda u = \lambda T^{-1}Tv = \lambda v.$$

So λ is an eigenvalue of A.

Theorem 4.9.2

Theorem 4.9.2. Let T be an invertible linear operator on E and let A be a linear operator on E. Then A and TAT^{-1} have the same eigenvalues.

Proof. Let λ be an eigenvalue of A. Then for some $u \neq 0$ we have $Au = \lambda u$. Since T^{-1} exists, $Tu \neq 0$ and

$$TAT^{-1}\underbrace{(Tu)}_{v} = TAu = T\lambda u = \lambda \underbrace{Tu}_{v}.$$

So λ is an eigenvalue of TAT^{-1} .

Now suppose λ is an eigenvalue of TAT^{-1} Then for some $u \neq 0$ we have $TAT^{-1}u = \lambda u$ wher $u = Tv \in E$. Then

$$Av = T^{-1}(TAT^{-1})(Tv = T^{-1}(TAT^{-1})u = T^{-1}\lambda u = \lambda T^{-1}Tv = \lambda v.$$

So λ is an eigenvalue of A.

Theorem 4.9.3. All eigenvalues of a self adjoint operator on a Hilbert space are real.

Proof. Let λ be an eigenvalue and u an eigenvector of A. Then

$$\lambda(u, u) = (\lambda u, u) = (Au, u) = (u, Au) = (u, \lambda u) = \overline{\lambda}(u, u)$$

implies $\lambda = \overline{\lambda}$ and so λ is real.

Theorem 4.9.3. All eigenvalues of a self adjoint operator on a Hilbert space are real.

Proof. Let λ be an eigenvalue and u an eigenvector of A. Then

$$\lambda(u, u) = (\lambda u, u) = (Au, u) = (u, Au) = (u, \lambda u) = \overline{\lambda}(u, u)$$

implies $\lambda = \overline{\lambda}$ and so λ is real.

Theorem 4.9.4. All eigenvalues of a positive operator are non-negative. All eigenvalues of a strictly positive operator are positive.

Proof. Let A be positive with $Ax = \lambda x$. Then (since A is self adjoint) we have

$$0 \le (Ax, x) = (\lambda x, x) = \lambda(x, x) = \lambda ||x||^2.$$

Since $x \neq 0$ then $\lambda \ge 0$. If A is strictly positive, then we can replace " \le " with "<."

Theorem 4.9.4. All eigenvalues of a positive operator are non-negative. All eigenvalues of a strictly positive operator are positive.

Proof. Let A be positive with $Ax = \lambda x$. Then (since A is self adjoint) we have

$$0 \leq (Ax, x) = (\lambda x, x) = \lambda(x, x) = \lambda ||x||^2.$$

Since $x \neq 0$ then $\lambda \ge 0$. If A is strictly positive, then we can replace " \le " with "<."

Theorem 4.9.5. All eigenvalues of a unitary operator on a Hilbert space are complex numbers of modulus 1.

Proof. Let λ be an eigenvalue of unitary operator A with $Au = \lambda u$. Then

$$(Au, Au) = (\lambda u, \lambda u) = |\lambda|^2 ||u||^2.$$

Also

$$(Au, Au) = (u, A^*Au) = (u, u) = ||u||^2.$$

Therefore $|\lambda| = 1$.

Theorem 4.9.5. All eigenvalues of a unitary operator on a Hilbert space are complex numbers of modulus 1.

Proof. Let λ be an eigenvalue of unitary operator A with $Au = \lambda u$. Then

$$(Au, Au) = (\lambda u, \lambda u) = |\lambda|^2 ||u||^2.$$

Also

$$(Au, Au) = (u, A^*Au) = (u, u) = ||u||^2.$$

Therefore $|\lambda| = 1$.

Theorem 4.9.6. Eigenvectors corresponding to distinct eigenvalues of self adjoint or unitary operator on a Hilbert space are orthogonal.

Proof. Let A be self adjoint and let u_1 and u_2 be eigenvectors corresponding to eigenvalues λ_1 and λ_2 where $\lambda_1 \neq \lambda_2$. By Theorem 4.9.3, $\lambda_1, \lambda_2 \in \mathbb{R}$. Then

$$\lambda_1(u_1, u_2) = (\lambda_1 u_1, u_2) = (Au_1, u_2) = (u_1, A^* u_2) = (u_1, Au_2)$$
$$= (u_1, \lambda_2 u_2) = \overline{\lambda}_2(u_1, u_2) = \lambda_2(u_1, u_2).$$
Since $\lambda_1 \neq \lambda_2$, it must be that $(u_1, u_2) = 0$.

Theorem 4.9.6. Eigenvectors corresponding to distinct eigenvalues of self adjoint or unitary operator on a Hilbert space are orthogonal.

Proof. Let *A* be self adjoint and let u_1 and u_2 be eigenvectors corresponding to eigenvalues λ_1 and λ_2 where $\lambda_1 \neq \lambda_2$. By Theorem 4.9.3, $\lambda_1, \lambda_2 \in \mathbb{R}$. Then

$$\begin{split} \lambda_1(u_1, u_2) &= (\lambda_1 u_1, u_2) = (A u_1, u_2) = (u_1, A^* u_2) = (u_1, A u_2) \\ &= (u_1, \lambda_2 u_2) = \overline{\lambda}_2(u_1, u_2) = \lambda_2(u_1, u_2). \end{split}$$

Since $\lambda_1 \neq \lambda_2$, it must be that $(u_1, u_2) = 0$.

Theorem 4.9.7. For every eigenvalue λ of a bounded operator A, we have $|\lambda| \leq ||A||$.

Proof. Suppose $Au = \lambda u$. We have $||\lambda u|| = ||Au||$ and so $|\lambda| ||u|| = ||Au|| \le ||A|| ||u||$. Therefore $|\lambda| \le ||A||$.

- **Theorem 4.9.7.** For every eigenvalue λ of a bounded operator A, we have $|\lambda| \leq ||A||$.
- **Proof.** Suppose $Au = \lambda u$. We have $||\lambda u|| = ||Au||$ and so $|\lambda| ||u|| = ||Au|| \le ||A|| ||u||$. Therefore $|\lambda| \le ||A||$.

