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Chapter 4. Linear Operators on Hilbert Spaces
Section 4.9. Eigenvalues and Eigenvectors—Proofs of Theorems
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Theorem 4.9.2

Theorem 4.9.2

Theorem 4.9.2. Let T be an invertible linear operator on E and let A be
a linear operator on E . Then A and TAT−1 have the same eigenvalues.

Proof. Let λ be an eigenvalue of A. Then for some u 6= 0 we have
Au = λu. Since T−1 exists, Tu 6= 0 and

TAT−1 (Tu)︸︷︷︸
v

= TAu = Tλu = λ Tu︸︷︷︸
v

.

So λ is an eigenvalue of TAT−1.

Now suppose λ is an eigenvalue of TAT−1 Then for some u 6= 0 we have
TAT−1u = λu wher u = Tv ∈ E . Then

Av = T−1(TAT−1)(Tv = T−1(TAT−1)u = T−1λu = λT−1Tv = λv .

So λ is an eigenvalue of A.
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Theorem 4.9.3

Theorem 4.9.3

Theorem 4.9.3. All eigenvalues of a self adjoint operator on a Hilbert
space are real.

Proof. Let λ be an eigenvalue and u an eigenvector of A. Then

λ(u, u) = (λu, u) = (Au, u) = (u,Au) = (u, λu) = λ(u, u)

implies λ = λ and so λ is real.
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Theorem 4.9.4

Theorem 4.9.4

Theorem 4.9.4. All eigenvalues of a positive operator are non-negative.
All eigenvalues of a strictly positive operator are positive.

Proof. Let A be positive with Ax = λx . Then (since A is self adjoint) we
have

0 ≤ (Ax , x) = (λx , x) = λ(x , x) = λ‖x‖2.

Since x 6= 0 then λ ≥ 0. If A is strictly positive, then we can replace “≤”
with “<.”
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Theorem 4.9.5

Theorem 4.9.5

Theorem 4.9.5. All eigenvalues of a unitary operator on a Hilbert space
are complex numbers of modulus 1.

Proof. Let λ be an eigenvalue of unitary operator A with Au = λu. Then

(Au,Au) = (λu, λu) = |λ|2‖u‖2.

Also
(Au,Au) = (u,A∗Au) = (u, u) = ‖u‖2.

Therefore |λ| = 1.
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Theorem 4.9.6

Theorem 4.9.6

Theorem 4.9.6. Eigenvectors corresponding to distinct eigenvalues of self
adjoint or unitary operator on a Hilbert space are orthogonal.

Proof. Let A be self adjoint and let u1 and u2 be eigenvectors
corresponding to eigenvalues λ1 and λ2 where λ1 6= λ2. By Theorem
4.9.3, λ1, λ2 ∈ R. Then

λ1(u1, u2) = (λ1u1, u2) = (Au1, u2) = (u1,A
∗u2) = (u1,Au2)

= (u1, λ2u2) = λ2(u1, u2) = λ2(u1, u2).

Since λ1 6= λ2, it must be that (u1, u2) = 0.
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Theorem 4.9.7

Theorem 4.9.7

Theorem 4.9.7. For every eigenvalue λ of a bounded operator A, we have
|λ| ≤ ‖A‖.

Proof. Suppose Au = λu. We have ‖λu‖ = ‖Au‖ and so
|λ| ‖u‖ = ‖Au‖ ≤ ‖A‖ ‖u‖. Therefore |λ| ≤ ‖A‖.
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