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Theorem 4.9.2

Theorem 4.9.2. Let T be an invertible linear operator on E and let A be
a linear operator on E. Then A and TAT ! have the same eigenvalues.
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Theorem 4.9.2

Theorem 4.9.2. Let T be an invertible linear operator on E and let A be
a linear operator on E. Then A and TAT ! have the same eigenvalues.

Proof. Let A\ be an eigenvalue of A. Then for some u # 0 we have
Au = A\u. Since T! exists, Tu # 0 and

TAT Y (Tu) = TAu= T u=\_Tu .
—~— ~

v v

So A is an eigenvalue of TAT 1.
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Theorem 4.9.2

Theorem 4.9.2. Let T be an invertible linear operator on E and let A be
a linear operator on E. Then A and TAT ! have the same eigenvalues.

Proof. Let )\ be an eigenvalue of A. Then for some u # 0 we have
Au = A\u. Since T! exists, Tu # 0 and

TAT Y (Tu) = TAu= T u=\_Tu .
~— ~~
So A is an eigenvalue of TAT 1.

Now suppose ) is an eigenvalue of TAT ~! Then for some u # 0 we have
TAT u = \uwher u= Tv € E. Then

Av =T YTAT)(Tv = T HTAT Hu= T Du= AT 1Tv = Av.

So A is an eigenvalue of A. O
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Theorem 4.9.3

Theorem 4.9.3. All eigenvalues of a self adjoint operator on a Hilbert
space are real.

Advanced Differential Equations April 22, 2019 4/8



Theorem 4.9.3

Theorem 4.9.3

Theorem 4.9.3. All eigenvalues of a self adjoint operator on a Hilbert
space are real.

Proof. Let )\ be an eigenvalue and u an eigenvector of A. Then

Mu, u) = (Au,u) = (Au, u) = (u, Au) = (u, Au) = M, v)

implies A = X and so \ is real. O
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Theorem 4.9.4

Theorem 4.9.4. All eigenvalues of a positive operator are non-negative.
All eigenvalues of a strictly positive operator are positive.
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Theorem 4.9.4

Theorem 4.9.4

Theorem 4.9.4. All eigenvalues of a positive operator are non-negative.
All eigenvalues of a strictly positive operator are positive.

Proof. Let A be positive with Ax = Ax. Then (since A is self adjoint) we
have

0 < (Ax,x) = (Ax, x) = A(x,x) = Al|x|]?.

Since x £ 0 then X\ > 0. If A is strictly positive, then we can replace “<"
with “<.” O
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Theorem 4.9.5

Theorem 4.9.5. All eigenvalues of a unitary operator on a Hilbert space
are complex numbers of modulus 1.
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Theorem 4.9.5

Theorem 4.9.5. All eigenvalues of a unitary operator on a Hilbert space
are complex numbers of modulus 1.

Proof. Let A be an eigenvalue of unitary operator A with Au = Au. Then
(Au, Au) = (Au, Au) = [AP[|ul.

Also
(Au, Au) = (u, A" Au) = (u, u) = |lu>.

Therefore || = 1. O
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Theorem 4.9.6

Theorem 4.9.6. Eigenvectors corresponding to distinct eigenvalues of self
adjoint or unitary operator on a Hilbert space are orthogonal.
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Theorem 4.9.6

Theorem 4.9.6. Eigenvectors corresponding to distinct eigenvalues of self
adjoint or unitary operator on a Hilbert space are orthogonal.

Proof. Let A be self adjoint and let u; and up be eigenvectors
corresponding to eigenvalues A1 and \» where A\; # A». By Theorem
4.9.3, )\1,/\2 € R. Then

A(ur, w2) = (Mur, up) = (Aur, u2) = (u1, A" u2) = (u1, Awo)

= (1, Aan) = Ao(u1, u2) = Ao(us, w).

Since A1 # Ag, it must be that (ug, u2) = 0. O
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Theorem 4.9.7

Theorem 4.9.7. For every eigenvalue A of a bounded operator A, we have
Al < [IA]-
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Theorem 4.9.7

Theorem 4.9.7

Theorem 4.9.7. For every eigenvalue A of a bounded operator A, we have
Al < [IA]-

Proof. Suppose Au = Au. We have ||\u|| = ||Au|| and so
(Al lull = [lAull < J[A] {ull. Therefore [A] < [|A]l. 0
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