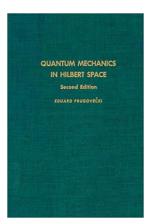
Modern Algebra

Chapter I. Basic Ideas of Hilbert Space Theory I.1. Vector Spaces—Proofs of Theorems



- 2 Theorem I.1.2
- 3 Theorem I.1.3
- Theorem I.1.4. The Fundamental Theorem of Finite Dimensional Vector Spaces

Theorem I.1.1. Every vector space \mathcal{V} has only one zero vector $\mathbf{0}$, and each element f of a vector space has one and only one additive inverse (-f). For any $f \in \mathcal{V}$, we have $0f = \mathbf{0}$ and (-1)f = (-f).

Proof. If $\mathbf{0}_1$ and $\mathbf{0}_2$ are both zero vectors, then by Axiom 3 of Definition 1.1, $f = f + \mathbf{0}_1 = f + \mathbf{0}_2$ for all $f \in \mathcal{V}$. With $f = \mathbf{0}_1$ we have $\mathbf{0}_1 = \mathbf{0}_1 + \mathbf{0}_2$ and with $f = \mathbf{0}_2$ we have $\mathbf{0}_2 = \mathbf{0}_2 + \mathbf{0}_1$, so by Axiom 1, $\mathbf{0}_1 = \mathbf{0}_1 + \mathbf{0}_2 = \mathbf{0}_2 + \mathbf{0}_1 = \mathbf{0}_2$. Therefore the additive identity vector is

unique.

Theorem I.1.1. Every vector space \mathcal{V} has only one zero vector $\mathbf{0}$, and each element f of a vector space has one and only one additive inverse (-f). For any $f \in \mathcal{V}$, we have $0f = \mathbf{0}$ and (-1)f = (-f).

Proof. If $\mathbf{0}_1$ and $\mathbf{0}_2$ are both zero vectors, then by Axiom 3 of Definition 1.1, $f = f + \mathbf{0}_1 = f + \mathbf{0}_2$ for all $f \in \mathcal{V}$. With $f = \mathbf{0}_1$ we have $\mathbf{0}_1 = \mathbf{0}_1 + \mathbf{0}_2$ and with $f = \mathbf{0}_2$ we have $\mathbf{0}_2 = \mathbf{0}_2 + \mathbf{0}_1$, so by Axiom 1, $\mathbf{0}_1 = \mathbf{0}_1 + \mathbf{0}_2 = \mathbf{0}_2 + \mathbf{0}_1 = \mathbf{0}_2$. Therefore the additive identity vector is unique.

Next,

$$f = af \text{ by Axiom 7}$$

= $(1+0)f = 1f + 0f \text{ by Axiom 5}$
= $f + 0f$ by Axiom 7

and so, by Axiom 3, $0f = \mathbf{0}$.

Theorem I.1.1. Every vector space \mathcal{V} has only one zero vector $\mathbf{0}$, and each element f of a vector space has one and only one additive inverse (-f). For any $f \in \mathcal{V}$, we have $0f = \mathbf{0}$ and (-1)f = (-f).

Proof. If $\mathbf{0}_1$ and $\mathbf{0}_2$ are both zero vectors, then by Axiom 3 of Definition 1.1, $f = f + \mathbf{0}_1 = f + \mathbf{0}_2$ for all $f \in \mathcal{V}$. With $f = \mathbf{0}_1$ we have $\mathbf{0}_1 = \mathbf{0}_1 + \mathbf{0}_2$ and with $f = \mathbf{0}_2$ we have $\mathbf{0}_2 = \mathbf{0}_2 + \mathbf{0}_1$, so by Axiom 1, $\mathbf{0}_1 = \mathbf{0}_1 + \mathbf{0}_2 = \mathbf{0}_2 + \mathbf{0}_1 = \mathbf{0}_2$. Therefore the additive identity vector is unique.

Next,

$$f = af \text{ by Axiom 7}$$

= $(1+0)f = 1f + 0f \text{ by Axiom 5}$
= $f + 0f$ by Axiom 7

and so, by Axiom 3, $0f = \mathbf{0}$.

Theorem I.1.1 (continued)

Theorem I.1.1. Every vector space \mathcal{V} has only one zero vector $\mathbf{0}$, and each element f of a vector space has one and only one additive inverse (-f). For any $f \in \mathcal{V}$, we have $0f = \mathbf{0}$ and (-1)f = (-f).

Proof (continued). We then have

$$(-1)f + f = (-1)f + 1f$$
 by Axiom 7
= $(-1+1)f$ by Axiom 5
= $0f = \mathbf{0}$,

and so f has an additive inverse and (-f) = (-1)f. Now suppose $f_1 \in \mathcal{V}$ is another additive inverse of f so that $f + f_1 = 0$. Then

$$(-f) = (-f) + \mathbf{0}$$
 by Axiom 3
= $(-f) + (f + f_1) = ((-f) + f) + f_1$ by Axiom 2
= $\mathbf{0} + f_1 = f_1$ be Axioms 1 and 3.

That is, $(-f) = f_1$ and the additive inverse of f is unique.

Theorem I.1.1 (continued)

Theorem I.1.1. Every vector space \mathcal{V} has only one zero vector $\mathbf{0}$, and each element f of a vector space has one and only one additive inverse (-f). For any $f \in \mathcal{V}$, we have $0f = \mathbf{0}$ and (-1)f = (-f).

Proof (continued). We then have

$$(-1)f + f = (-1)f + 1f \text{ by Axiom } \overline{f}$$
$$= (-1+1)f \text{ by Axiom 5}$$
$$= 0f = \mathbf{0},$$

and so f has an additive inverse and (-f) = (-1)f. Now suppose $f_1 \in \mathcal{V}$ is another additive inverse of f so that $f + f_1 = \mathbf{0}$. Then

$$(-f) = (-f) + 0 \text{ by Axiom 3} = (-f) + (f + f_1) = ((-f) + f) + f_1 \text{ by Axiom 2} = 0 + f_1 = f_1 \text{ be Axioms 1 and 3.}$$

That is, $(-f) = f_1$ and the additive inverse of f is unique.

Theorem 1.1.2. If the vector space \mathcal{V} is *n* dimensional, where $n \in \mathbb{N}$, then there is at least one set f_1, f_2, \ldots, f_n of linearly independent vectors, and each vector $f \in \mathcal{V}$ can be expanded as $f = a_1f_1 + a_2f_2 + \cdots + a_nf_n$, there the coefficients a_1, a_2, \ldots, a_n are uniquely determined by f.

Proof. First, if f = 0 then we can just take $a_1 = a_2 = \cdots = a_n$ (by Theorem I.1.1 and Axiom 3). For $f \neq 0$, the equation $cf + c_1f_2 + c_2f_2 + \cdots + c_nf_n = 0$ has a solution where $c \neq 0$ because f_1, f_2, \ldots, f_n are linearly independent and \mathcal{V} is dimension n (so f, f_1, f_2, \ldots, f_n must be dependent, but if c = 0 then we would need $c_1 = c_2 = \cdots = c_n = 0$).

Theorem 1.1.2. If the vector space \mathcal{V} is *n* dimensional, where $n \in \mathbb{N}$, then there is at least one set f_1, f_2, \ldots, f_n of linearly independent vectors, and each vector $f \in \mathcal{V}$ can be expanded as $f = a_1f_1 + a_2f_2 + \cdots + a_nf_n$, there the coefficients a_1, a_2, \ldots, a_n are uniquely determined by f.

Proof. First, if $f = \mathbf{0}$ then we can just take $a_1 = a_2 = \cdots = a_n$ (by Theorem I.1.1 and Axiom 3). For $f \neq \mathbf{0}$, the equation $cf + c_1f_2 + c_2f_2 + \cdots + c_nf_n = \mathbf{0}$ has a solution where $c \neq 0$ because f_1, f_2, \ldots, f_n are linearly independent and \mathcal{V} is dimension n (so f, f_1, f_2, \ldots, f_n must be dependent, but if c = 0 then we would need $c_1 = c_2 = \cdots = c_n = 0$). So we get

$$f=\frac{-c_1}{c}f_1+\frac{-c_2}{c}f_2+\cdots+\frac{-c_n}{c}f_n,$$

and so scalars a_1, a_2, \ldots, a_n exist as claimed.

5 / 10

Theorem 1.1.2. If the vector space \mathcal{V} is *n* dimensional, where $n \in \mathbb{N}$, then there is at least one set f_1, f_2, \ldots, f_n of linearly independent vectors, and each vector $f \in \mathcal{V}$ can be expanded as $f = a_1f_1 + a_2f_2 + \cdots + a_nf_n$, there the coefficients a_1, a_2, \ldots, a_n are uniquely determined by f.

Proof. First, if $f = \mathbf{0}$ then we can just take $a_1 = a_2 = \cdots = a_n$ (by Theorem I.1.1 and Axiom 3). For $f \neq \mathbf{0}$, the equation $cf + c_1f_2 + c_2f_2 + \cdots + c_nf_n = \mathbf{0}$ has a solution where $c \neq 0$ because f_1, f_2, \ldots, f_n are linearly independent and \mathcal{V} is dimension n (so f, f_1, f_2, \ldots, f_n must be dependent, but if c = 0 then we would need $c_1 = c_2 = \cdots = c_n = 0$). So we get

$$f=\frac{-c_1}{c}f_1+\frac{-c_2}{c}f_2+\cdots+\frac{-c_n}{c}f_n,$$

and so scalars a_1, a_2, \ldots, a_n exist as claimed.

Theorem I.1.2 (continued)

Theorem I.1.2. If the vector space \mathcal{V} is *n* dimensional, where $n \in \mathbb{N}$, then there is at least one set f_1, f_2, \ldots, f_n of linearly independent vectors, and each vector $f \in \mathcal{V}$ can be expanded as $f = a_1f_1 + a_2f_2 + \cdots + a_nf_n$, there the coefficients a_1, a_2, \ldots, a_n are uniquely determined by f.

Proof (continued). If we also have $f = b_1 f_1 + b_2 f_2 + \cdots + b_n f_n$, then

$$\mathbf{0} = f - f = (a_1f_1 + a_2f_2 + \dots + a_nf_n) - (b_1f_1 + b_2f_2 + \dots + b_nf_n)$$
$$= (a_1 - b_1)f_1 + (a_2 - b_2)f_2 + \dots + (a_n - b_n)f_n$$

by Axiom 1 and Axiom 5. But since f_1, f_2, \ldots, f_n are linearly independent then (by Definition I.1.2), $a_1 - b_1 = 0$, $a_2 - b_2 = 0$, \ldots , $a_n - b_n = 0$ and so $a_1 = b_1$, $a_2 = b_2$, \ldots , $a_n = b_n$. That is, the choice of coefficients a_1, a_2, \ldots, a_n is unique, as claimed.

Theorem I.1.2 (continued)

Theorem I.1.2. If the vector space \mathcal{V} is *n* dimensional, where $n \in \mathbb{N}$, then there is at least one set f_1, f_2, \ldots, f_n of linearly independent vectors, and each vector $f \in \mathcal{V}$ can be expanded as $f = a_1f_1 + a_2f_2 + \cdots + a_nf_n$, there the coefficients a_1, a_2, \ldots, a_n are uniquely determined by f.

Proof (continued). If we also have $f = b_1 f_1 + b_2 f_2 + \cdots + b_n f_n$, then

$$\mathbf{0} = f - f = (a_1f_1 + a_2f_2 + \dots + a_nf_n) - (b_1f_1 + b_2f_2 + \dots + b_nf_n)$$
$$= (a_1 - b_1)f_1 + (a_2 - b_2)f_2 + \dots + (a_n - b_n)f_n$$

by Axiom 1 and Axiom 5. But since f_1, f_2, \ldots, f_n are linearly independent then (by Definition I.1.2), $a_1 - b_1 = 0$, $a_2 - b_2 = 0$, \ldots , $a_n - b_n = 0$ and so $a_1 = b_1$, $a_2 = b_2$, \ldots , $a_n = b_n$. That is, the choice of coefficients a_1, a_2, \ldots, a_n is unique, as claimed.

Theorem I.1.3. If the set $\{g_1, g_2, \ldots, g_n\}$ is a basis of *n*-dimensional vector space \mathcal{V} (where $n \in \mathbb{N}$), then m = n. That is, all bases of an *n*-dimensional vector space are of the same size *n*.

Proof. Since \mathcal{V} is *n*-dimensional, there are *n* linearly independent vectors f_1, f_2, \ldots, f_n . Since $\{g_1, g_2, \ldots, g_n\}$ is a basis, then

$$f_{1} = a_{11}g_{1} + a_{21}g_{2} + \dots + a_{m1}g_{m}$$

$$f_{2} = a_{12}g_{1} + a_{22}g_{2} + \dots + a_{m2}g_{m}$$

$$\vdots$$

$$f_{n} = a_{1n}g_{1} + a_{2n}g_{2} + \dots + a_{mn}g_{m}.$$

Theorem I.1.3. If the set $\{g_1, g_2, \ldots, g_n\}$ is a basis of *n*-dimensional vector space \mathcal{V} (where $n \in \mathbb{N}$), then m = n. That is, all bases of an *n*-dimensional vector space are of the same size *n*.

Proof. Since \mathcal{V} is *n*-dimensional, there are *n* linearly independent vectors f_1, f_2, \ldots, f_n . Since $\{g_1, g_2, \ldots, g_n\}$ is a basis, then

$$f_{1} = a_{11}g_{1} + a_{21}g_{2} + \dots + a_{m1}g_{m}$$

$$f_{2} = a_{12}g_{1} + a_{22}g_{2} + \dots + a_{m2}g_{m}$$

$$\vdots$$

$$f_{n} = a_{1n}g_{1} + a_{2n}g_{2} + \dots + a_{mn}g_{m}.$$

So if $x_1f_1 + x_2f_2 + \cdots + x_nf_n = \mathbf{0}$ then substituting for f_1, f_2, \dots, f_n we get

 $x_1f_1 + x_2f_2 + \dots + x_nf_n = (a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n)g_1$

 $+(a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n)g_2+\cdots+(a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n)g_m=\mathbf{0}.$

Theorem I.1.3. If the set $\{g_1, g_2, \ldots, g_n\}$ is a basis of *n*-dimensional vector space \mathcal{V} (where $n \in \mathbb{N}$), then m = n. That is, all bases of an *n*-dimensional vector space are of the same size *n*.

Proof. Since \mathcal{V} is *n*-dimensional, there are *n* linearly independent vectors f_1, f_2, \ldots, f_n . Since $\{g_1, g_2, \ldots, g_n\}$ is a basis, then

$$f_{1} = a_{11}g_{1} + a_{21}g_{2} + \dots + a_{m1}g_{m}$$

$$f_{2} = a_{12}g_{1} + a_{22}g_{2} + \dots + a_{m2}g_{m}$$

$$\vdots$$

$$f_{n} = a_{1n}g_{1} + a_{2n}g_{2} + \dots + a_{mn}g_{m}.$$

So if $x_1f_1 + x_2f_2 + \cdots + x_nf_n = \mathbf{0}$ then substituting for f_1, f_2, \dots, f_n we get

$$x_1f_1 + x_2f_2 + \cdots + x_nf_n = (a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n)g_1$$

 $+(a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n)g_2+\cdots+(a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n)g_m=\mathbf{0}.$

Theorem I.1.3 (continued)

Proof (continued). Since g_1, g_2, \ldots, g_m are linearly independent, then x_1, x_2, \ldots, x_n satisfy the homogeneous system of equations

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = 0,$$

and conversely any solution to this system of equations yields $x_1f_1 + x_2f_2 + \cdots + x_nf_n = \mathbf{0}$. But since f_1, f_2, \ldots, f_n are linearly independent then the only solution to the system of equations is the trivial solution $x_1 = x_2 = \cdots = x_n = \mathbf{0}$. Finally, we have $m \leq n$ since \mathcal{V} is *n*-dimensional and g_1, g_2, \ldots, g_m are linearly independent (see Definition I.1.2). Since the homogeneous system of equations only has the trivial solution, then by Lemma I.1.A above, $n \leq m$. Therefore m = n, as claimed.

()

Theorem I.1.3 (continued)

Proof (continued). Since g_1, g_2, \ldots, g_m are linearly independent, then x_1, x_2, \ldots, x_n satisfy the homogeneous system of equations

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0.$$

and conversely any solution to this system of equations yields $x_1f_1 + x_2f_2 + \cdots + x_nf_n = \mathbf{0}$. But since f_1, f_2, \ldots, f_n are linearly independent then the only solution to the system of equations is the trivial solution $x_1 = x_2 = \cdots = x_n = 0$. Finally, we have $m \le n$ since \mathcal{V} is *n*-dimensional and g_1, g_2, \ldots, g_m are linearly independent (see Definition 1.1.2). Since the homogeneous system of equations only has the trivial solution, then by Lemma 1.1.A above, $n \le m$. Therefore m = n, as claimed.

Theorem I.1.4. The Fundamental Theorem of Finite Dimensional Vector Spaces.

All complex (real) *n*-dimensional $(n \in \mathbb{N})$ vector spaces are isomorphic to the vector space \mathbb{C}^n (or \mathbb{R}^n in the case of real vector spaces).

Proof. Let \mathcal{V} be an *n*-dimensional complex vector space. By Theorem 1.1.2, there is a basis consisting of *n* vectors, f_1, f_2, \ldots, f_n , and each given $f \in \mathcal{V}$ can be expanded as $f = a_1 f_1 + a_2 f_2 + \cdots + a_n f_n$ for unique $a_1, a_2, \ldots, a_n \in \mathbb{C}$. So we define a mapping of \mathcal{V} to \mathbb{C}^n as $f \mapsto \alpha_f = [a_1, a_2, \ldots, a_n]^T \in \mathbb{C}^n / Notice that this mapping is one to one (by the uniqueness of the <math>a_i$'s) and onto.

Theorem I.1.4. The Fundamental Theorem of Finite Dimensional Vector Spaces.

All complex (real) *n*-dimensional $(n \in \mathbb{N})$ vector spaces are isomorphic to the vector space \mathbb{C}^n (or \mathbb{R}^n in the case of real vector spaces).

Proof. Let \mathcal{V} be an *n*-dimensional complex vector space. By Theorem 1.1.2, there is a basis consisting of *n* vectors, f_1, f_2, \ldots, f_n , and each given $f \in \mathcal{V}$ can be expanded as $f = a_1f_1 + a_2f_2 + \cdots + a_nf_n$ for unique $a_1, a_2, \ldots, a_n \in \mathbb{C}$. So we define a mapping of \mathcal{V} to \mathbb{C}^n as $f \mapsto \alpha_f = [a_1, a_2, \ldots, a_n]^T \in \mathbb{C}^n /$ Notice that this mapping is one to one (by the uniqueness of the a_i 's) and onto. Now for $f, g \in \mathcal{V}$ with $f = a_1f_1 + a_2f_2 + \cdots + a_nf_n$ we have

 $f + g = (a_1 + b_1)f_1 + (a_2 + b_2)f_2 + \dots + (a_n + b_n)f_n \mapsto \dots$

Theorem I.1.4. The Fundamental Theorem of Finite Dimensional Vector Spaces.

All complex (real) *n*-dimensional $(n \in \mathbb{N})$ vector spaces are isomorphic to the vector space \mathbb{C}^n (or \mathbb{R}^n in the case of real vector spaces).

Proof. Let \mathcal{V} be an *n*-dimensional complex vector space. By Theorem 1.1.2, there is a basis consisting of *n* vectors, f_1, f_2, \ldots, f_n , and each given $f \in \mathcal{V}$ can be expanded as $f = a_1f_1 + a_2f_2 + \cdots + a_nf_n$ for unique $a_1, a_2, \ldots, a_n \in \mathbb{C}$. So we define a mapping of \mathcal{V} to \mathbb{C}^n as $f \mapsto \alpha_f = [a_1, a_2, \ldots, a_n]^T \in \mathbb{C}^n /$ Notice that this mapping is one to one (by the uniqueness of the a_i 's) and onto. Now for $f, g \in \mathcal{V}$ with $f = a_1f_1 + a_2f_2 + \cdots + a_nf_n$ we have

$$f + g = (a_1 + b_1)f_1 + (a_2 + b_2)f_2 + \cdots + (a_n + b_n)f_n \mapsto \cdots$$

Theorem I.1.4 (continued)

Proof (continued).

$$\cdots \begin{bmatrix} a_1 + b_1 \\ a_2 + b_2 \\ \vdots \\ a_n + b_n \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

and for scalar $a \in \mathbb{C}$,
$$af = (aa_1)f_1 + (aa_2)f_2 + \cdots + (aa_n)f_n \mapsto \begin{bmatrix} aa_1 \\ aa_2 \\ \vdots \\ aa_n \end{bmatrix} = a \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ aa_n \end{bmatrix},$$

and so the mapping is an isomorphism. Hence, \mathcal{V} is isomorphic to \mathbb{C}^n . Replacing field \mathbb{C} with field \mathbb{R} , we see that real *n*-dimensional vector space is isomorphic to \mathbb{R} and, more generally, *n*-dimensional vector space \mathcal{V} over field F is isomorphic to Fⁿ.

()

Theorem I.1.4 (continued)

Proof (continued).

$$\cdots \begin{bmatrix} a_1 + b_1 \\ a_2 + b_2 \\ \vdots \\ a_n + b_n \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

and for scalar $a \in \mathbb{C}$,
 $af = (aa_1)f_1 + (aa_2)f_2 + \cdots + (aa_n)f_n \mapsto \begin{bmatrix} aa_1 \\ aa_2 \\ \vdots \\ aa_n \end{bmatrix} = a \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix},$

and so the mapping is an isomorphism. Hence, \mathcal{V} is isomorphic to \mathbb{C}^n . Replacing field \mathbb{C} with field \mathbb{R} , we see that real *n*-dimensional vector space is isomorphic to \mathbb{R} and, more generally, *n*-dimensional vector space \mathcal{V} over field F is isomorphic to Fⁿ.