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Theorem I.1.1

Theorem I.1.1

Theorem I.1.1. Every vector space V has only one zero vector 0, and
each element f of a vector space has one and only one additive inverse
(−f ). For any f ∈ V, we have 0f = 0 and (−1)f = (−f ).

Proof. If 01 and 02 are both zero vectors, then by Axiom 3 of Definition
I.1, f = f + 01 = f + 02 for all f ∈ V. With f = 01 we have 01 = 01 + 02

and with f = 02 we have 02 = 02 + 01, so by Axiom 1,
01 = 01 + 02 = 02 + 01 = 02. Therefore the additive identity vector is
unique.

Next,

f = af by Axiom 7

= (1 + 0)f = 1f + 0f by Axiom 5

= f + 0f by Axiom 7

and so, by Axiom 3, 0f = 0.
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Theorem I.1.1

Theorem I.1.1 (continued)

Theorem I.1.1. Every vector space V has only one zero vector 0, and
each element f of a vector space has one and only one additive inverse
(−f ). For any f ∈ V, we have 0f = 0 and (−1)f = (−f ).

Proof (continued). We then have

(−1)f + f = (−1)f + 1f by Axiom 7

= (−1 + 1)f by Axiom 5

= 0f = 0,

and so f has an additive inverse and (−f ) = (−1)f . Now suppose f1 ∈ V
is another additive inverse of f so that f + f1 = 0. Then

(−f ) = (−f ) + 0 by Axiom 3

= (−f ) + (f + f1) = ((−f ) + f ) + f1 by Axiom 2

= 0 + f1 = f1 be Axioms 1 and 3.

That is, (−f ) = f1 and the additive inverse of f is unique.
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Theorem I.1.2

Theorem I.1.2

Theorem I.1.2. If the vector space V is n dimensional, where n ∈ N, then
there is at least one set f1, f2, . . . , fn of linearly independent vectors, and
each vector f ∈ V can be expanded as f = a1f1 + a2f2 + · · ·+ anfn, there
the coefficients a1, a2, . . . , an are uniquely determined by f .

Proof. First, if f = 0 then we can just take a1 = a2 = · · · = an (by
Theorem I.1.1 and Axiom 3). For f 6= 0, the equation
cf + c1f2 + c2f2 + · · · cnfn = 0 has a solution where c 6= 0 because
f1, f2, . . . , fn are linearly independent and V is dimension n (so
f , f1, f2, . . . , fn must be dependent, but if c = 0 then we would need
c1 = c2 = · · · = cn = 0).

So we get

f =
−c1

c
f1 +

−c2

c
f2 + · · ·+ −cn

c
fn,

and so scalars a1, a2, . . . , an exist as claimed.
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Theorem I.1.2

Theorem I.1.2 (continued)

Theorem I.1.2. If the vector space V is n dimensional, where n ∈ N, then
there is at least one set f1, f2, . . . , fn of linearly independent vectors, and
each vector f ∈ V can be expanded as f = a1f1 + a2f2 + · · ·+ anfn, there
the coefficients a1, a2, . . . , an are uniquely determined by f .

Proof (continued). If we also have f = b1f1 + b2f2 + · · ·+ bnfn, then

0 = f − f = (a1f1 + a2f2 + · · ·+ anfn)− (b1f1 + b2f2 + · · ·+ bnfn)

= (a1 − b1)f1 + (a2 − b2)f2 + · · ·+ (an − bn)fn

by Axiom 1 and Axiom 5. But since f1, f2, . . . , fn are linearly independent
then (by Definition I.1.2), a1 − b1 = 0, a2 − b2 = 0, . . . , an − bn = 0 and
so a1 = b1, a2 = b2, . . . , an = bn. That is, the choice of coefficients
a1, a2, . . . , an is unique, as claimed.
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Theorem I.1.3

Theorem I.1.3

Theorem I.1.3. If the set {g1, g2, . . . , gn} is a basis of n-dimensional
vector space V (where n ∈ N), then m = n. That is, all bases of an
n-dimensional vector space are of the same size n.

Proof. Since V is n-dimensional, there are n linearly independent vectors
f1, f2, . . . , fn. Since {g1, g2, . . . , gn} is a basis, then

f1 = a11g1 + a21g2 + · · ·+ am1gm

f2 = a12g1 + a22g2 + · · ·+ am2gm

...

fn = a1ng1 + a2ng2 + · · ·+ amngm.

So if x1f1 + x2f2 + · · · xnfn = 0 then substituting for f1, f2, . . . , fn we get

x1f1 + x2f2 + · · ·+ xnfn = (a11x1 + a12x2 + · · ·+ a1nxn)g1

+(a21x1+a22x2+· · ·+a2nxn)g2+· · ·+(am1x1+am2x2+· · ·+amnxn)gm = 0.
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Theorem I.1.3

Theorem I.1.3 (continued)

Proof (continued). Since g1, g2, . . . , gm are linearly independent, then
x1, x2, . . . , xn satisfy the homogeneous system of equations

a11x1 + a12x2 + · · ·+ a1nxn = 0

a21x1 + a22x2 + · · ·+ a2nxn = 0
...

am1x1 + am2x2 + · · ·+ amnxn = 0,

and conversely any solution to this system of equations yields
x1f1 + x2f2 + · · ·+ xnfn = 0. But since f1, f2, . . . , fn are linearly independent
then the only solution to the system of equations is the trivial solution
x1 = x2 = · · · = xn = 0. Finally, we have m ≤ n since V is n-dimensional
and g1, g2, . . . , gm are linearly independent (see Definition I.1.2). Since the
homogeneous system of equations only has the trivial solution, then by
Lemma I.1.A above, n ≤ m. Therefore m = n, as claimed.
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Theorem I.1.4. The Fundamental Theorem of Finite Dimensional
Vector Spaces

Theorem I.1.4

Theorem I.1.4. The Fundamental Theorem of Finite Dimensional
Vector Spaces.
All complex (real) n-dimensional (n ∈ N) vector spaces are isomorphic to
the vector space Cn (or Rn in the case of real vector spaces).

Proof. Let V be an n-dimensional complex vector space. By Theorem
I.1.2, there is a basis consisting of n vectors, f1, f2, . . . , fn, and each given
f ∈ V can be expanded as f = a1f1 + a2f2 + · · ·+ anfn for unique
a1, a2, . . . , an ∈ C. So we define a mapping of V to Cn as
f 7→ αf = [a1, a2, . . . , an]

T ∈ Cn/ Notice that this mapping is one to one
(by the uniqueness of the ai ’s) and onto.

Now for f , g ∈ V with
f = a1f1 + a2f2 + · · ·+ anfn and g = b1f1 + b2f2 + · · ·+ anfn we have

f + g = (a1 + b1)f1 + (a2 + b2)f2 + · · ·+ (an + bn)fn 7→ · · ·

() Modern Algebra November 22, 2018 9 / 10



Theorem I.1.4. The Fundamental Theorem of Finite Dimensional
Vector Spaces

Theorem I.1.4

Theorem I.1.4. The Fundamental Theorem of Finite Dimensional
Vector Spaces.
All complex (real) n-dimensional (n ∈ N) vector spaces are isomorphic to
the vector space Cn (or Rn in the case of real vector spaces).

Proof. Let V be an n-dimensional complex vector space. By Theorem
I.1.2, there is a basis consisting of n vectors, f1, f2, . . . , fn, and each given
f ∈ V can be expanded as f = a1f1 + a2f2 + · · ·+ anfn for unique
a1, a2, . . . , an ∈ C. So we define a mapping of V to Cn as
f 7→ αf = [a1, a2, . . . , an]

T ∈ Cn/ Notice that this mapping is one to one
(by the uniqueness of the ai ’s) and onto. Now for f , g ∈ V with
f = a1f1 + a2f2 + · · ·+ anfn and g = b1f1 + b2f2 + · · ·+ anfn we have

f + g = (a1 + b1)f1 + (a2 + b2)f2 + · · ·+ (an + bn)fn 7→ · · ·

() Modern Algebra November 22, 2018 9 / 10



Theorem I.1.4. The Fundamental Theorem of Finite Dimensional
Vector Spaces

Theorem I.1.4

Theorem I.1.4. The Fundamental Theorem of Finite Dimensional
Vector Spaces.
All complex (real) n-dimensional (n ∈ N) vector spaces are isomorphic to
the vector space Cn (or Rn in the case of real vector spaces).

Proof. Let V be an n-dimensional complex vector space. By Theorem
I.1.2, there is a basis consisting of n vectors, f1, f2, . . . , fn, and each given
f ∈ V can be expanded as f = a1f1 + a2f2 + · · ·+ anfn for unique
a1, a2, . . . , an ∈ C. So we define a mapping of V to Cn as
f 7→ αf = [a1, a2, . . . , an]

T ∈ Cn/ Notice that this mapping is one to one
(by the uniqueness of the ai ’s) and onto. Now for f , g ∈ V with
f = a1f1 + a2f2 + · · ·+ anfn and g = b1f1 + b2f2 + · · ·+ anfn we have

f + g = (a1 + b1)f1 + (a2 + b2)f2 + · · ·+ (an + bn)fn 7→ · · ·

() Modern Algebra November 22, 2018 9 / 10



Theorem I.1.4. The Fundamental Theorem of Finite Dimensional
Vector Spaces

Theorem I.1.4 (continued)

Proof (continued).

· · ·


a1 + b1

a2 + b2
...

an + bn

 =


a1

a2
...
an

 +


b1

b2
...

bn


and for scalar a ∈ C,

af = (aa1)f1 + (aa2)f2 + · · ·+ (aan)fn 7→


aa1

aa2
...

aan

 = a


a1

a2
...
an

 ,

and so the mapping is an isomorphism. Hence, V is isomorphic to Cn.
Replacing field C with field R, we see that real n-dimensional vector space
is isomorphic to R and, more generally, n-dimensional vector space V over
field F is isomorphic to Fn.
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