Theorem 1.2.1

Modern Algebra J

Chapter |. Basic Ideas of Hilbert Space Theory
I.2. Euclidean (pre-Hilbert) Spaces—Proofs of Theorems

Theorem 1.2.1. In a Euclidean space &, the inner product (f | g) satisfies
the relations:

(a) (af [ g) =a"(f | g), and
(b) (F+glh =(f[h)+(gl|h
for all f, g, h € £ and for every scalar a.

Proof. We have

(af | g) = (g af)* by Definition 1.2.1(2)
= (alg | f))* by Definition 1.2.1(3)
= a*(g| f)* since (z122)* = z{ 2}
= a*(f | g) by Definition 1.2.1(2),
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Theorem 1.2.2. Schwarz-Cauchy Inequality

L Theoeml2l | :
Theorem 1.2.1 (continued) Theorem 1.2.2

Theorem 1.2.2. Schwarz-Cauchy Inequality.

Theorem 1.2.1. In a Euclidean space &, the inner product (f | g) satisfies Any two elements f, g of a Euclidean space £ satisfies

the relations:
(a) (af | g) = a*(f | g), and (Fle)P <(f|f)g]|eg)
(b) (fF+g|h)=(f|h)+(g|h

. i >
for all f.g.h € and for every scalar a. Proof. For any f,g € £ and any a € C we have (f +ag | f + ag) > 0 by

Definition 1.2.1(1). If (f | g) = 0 then the result holds (again, by Definition
Proof. ... 1.2.1(1)), so we can assume without loss of generality that (f | g) # 0. Let
a=Mf|g)*/|(f]|g)| where A € R. Then (f +ag | f + ag) > 0 implies
(f+g|h = (h|f+g)" by Definition 1.2.1(2) o
— ((h| )+ (h| &))" by Definition 1.2.1(4) (f+ag|f+ag) = (f+ag|f)f+ag]|ag) by Definition 1.2.1(4)
— (h| £+ (h| g)* since (21 + 22)% = 2 + 2} = (F1f)+(ag|f)+({f|ag)+(ag|ag)

— (f|g)+ (g | h) by Definition 1.2.1(2). by Theorem 1.2.1(b)
a‘alg|g)+(f|ag) +(f|ag)+(f|f)
O by Definition 1.2.1(2) ...
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Theorem 1.2.2. Schwarz

Theorem 1.2.2 (continued 1)

Proof (continued). ...

(f+ag|f+ag) = lal*(g|g)+a*(f|g) +alf | g)+(f|f)
by Definition 1.2.1(3)
_ ‘)\<f|g>"’2 (f | &)
(f | &)l [{f 1)l
(flg)"

AR 1 £) + (F )
Mg | g) +2X[(f | g)| +(f])
since |z*| = |z| and z*z = |z|?
> 0.

(glg)+A (flg)"

Define polynomial of real variable
p(A) = X%+ (g | &) + 2AMf | g)| + (f | ).
0 |
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Theorem 1.2.3

Theorem 1.2.3. In a Euclidean space & with inner product (f | g), the
real-valued function ||f|| = /(f | ) is a norm.

Proof. We check the four parts of Definition 1.2.2.

(1) If £ # 0 then (f | f) > 0 by Definition 1.2.1(1), so ||f|| = +/{f | f) >0
for f # 0.

(2)(0/0)=(0|0+0)=(0|0+ (0| 0) by Definition 1.2.1(4), so that
(0/0)=0and [|0] =+/(0]|0)=0.

(3)
|af|| = +/(af | af) = \/a*a(f | f) by Definition 1.2.1(3)
and Theorem 1.2.1(a)
= Vara/(f | f) = |a|||f| since |z|* = z*z.
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heorem 1.2.2. Schwarz-Cauchy Inequality

Theorem 1.2.2 (continued 2)

Theorem 1.2.2. Schwarz-Cauchy Inequality.
Any two elements f, g of a Euclidean space £ satisfies

(Fl1e)? < (F|f)glg).

Proof (continued). Then p()) is a second degree nonnegative concave
up polynomial and so it must have at most one root. This means the
discriminant from the quadratic equation must no non-positive. So we

n[eed (3|<f 1&))>—4((g [ g)((f|f))<0or(f|g)*<(f|f)g|g) as
claimed. O]
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Theorem 1.2.3 (continued)

Proof (continued). (4) For the Triangle Inequality, we have

If +gl> = (f+gl|f+eg)
= (fFIH)+{flg)+(glf)+(glg)
by Definition 1.2.1(4) and Theorem 1.2.1(b)
IFII>+(f | &) +(f | &)* + (g | &) by Definition 1.2.1(2)
I£11> +2Re((f | &) + llgl|* since z + z* = 2Re(z)
I£11% + rIRe((f | &))] + llgll®
IF11? +2[(f | &) + llg||* since |Re(2)| < |2
IF12 +2V(F [ F) g | &) + llgll®
by Schwarz-Cauchy Inequality (Theorem 1.2.2)
1117 + 21 Fllllgll + llgli® = (IF] + llell)?,

and so [|f +gll < [If]| + l&]- O

IA A IA
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Theorem 1.2.4 Theorem 1.2.4 (continued 1)

Proof (continued). Since g # 0, let e; = g1/| g1||. Then recursively
Theorem 1.2.4. If S is a finite of countably infinite set of vectors in a define e, for n > 2 in terms of g, and e;, e,...,€,-1 as
Euclidean space £ and V is the vector subspace of £ spanned by S, then 8n— (en—1 | nYen—1 — (€n—2 | Bn)en—2 — - — (&1 | g@n)er

€en = y
! ”gn - (en—l | gn)en—l - (en—2 | gn>en—2 — (el | gn>el||

We now show the denominator here is nonzero. ASSUME

there is an orthonormal system T of vectors which spans V; that is, for
which span(T) =V (that is, the set of all linear combinations of elements
of T; Prugovelki denotes the space of T as (T)). T is a finite set when S

is a finite set. gn— (en-1|8n)en-1— (€n—2 | gn)en—2— -~ — (€1 | gn)er = 0.

Proof. Let S = {fifs,...}. Define g1 to be the first nonzero vector in S. We have such g, expanded as a linear combination of e, e, ..., e (so

Then recursively define g, for n > 2 as g, = f,, where m is the minimum span(g1, &2,...,8k) C span(ei, e, ..., e)) and so we can solve for g, as

index such that {g1,4»,...,8n-1,fa} is linearly independent; if no such m follows (where ¢, are scalars):

exists, take So = {g1,,...,8n-1} (so if Sp is finite then Tfinite). Then _

. . . & = cueéa

So = {g1,84>,...}. Notice that Sy is linearly independent and B

span(Sp) = span(S). We now create orthonormal set T from Sy using the g = et e

Gram-Schmidt process (or the “Schmidt orthonormalization procedure”).

8nh-1 = Cp-1,1€1+Cp-12€2+ -+ Ch_1.n-16n-1.
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Theorem 1.2.4 (continued 2) Theorem 1.2.4 (continued 3)

Proof (continued). Suppose we have shown that (e; | ej) = d;; for

Proof (continued). We can inductively solve this system of equations for T
ihj=12,....,n—1 Thenform<n

e in terms of gj, solve for e; in terms of g3 and g, ..., solve for e,_1 in
terms of g1,8,...,8n—1 (this is sometimes called “back substitution™). g — (en1 | g@n)en1— - — (e | gn)e
This implies span(ey, e, ..., ex) C span(g1, &2, ---,8k) and hence (em | €n) = <E'm y unt R RLlndind AL LA >
span(er, e, ..., &) = span(g1. &>, . .., &) and lgn = (en1 |1g”>e”_1 — o~ (alamal
span(T) = span(Sp) = span(S). If the assumed equality holds then g, is a = X
linear combination of e;, es,. .., e,_1, but then we can substitute for ¢; its llgn — (en-11 g”fe”‘l — -~ (e | gn)erl]
expression in terms of g1,g2,....&; (for 1 <i < n—1) and then we can —
express g, as a linear cimiinatiofol(: 81,825+, 8n-1, )CONTRADICTING ((em | &n) — Z(ek | &n) (em | ek))
the choice of g,. So the denominator in the formula for e, is not 0 and e, k=1 1
is defined. = X
The vectors in | = {e;, es,...} are unit vectors (i.e., normalized). We now llgn — (en-1 |:’r”1>e”_1 — (el gn)ell
show orthogonality. Let §;; = { (1) :if: : ;j . We give an induction ((em | gn) — Z(ek | gn)fimk) =0.

k=1

argument.
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Theorem 1.2.4 (continued 4) Theorem 1.2.5

Theorem 1.2.4. If S is a finite of countably infinite set of vectors in a
Euclidean space £ and V is the vector subspace of £ spanned by S, then
there is an orthonormal system T of vectors which spans V; that is, for

Theorem 1.2.5. All complex Euclidean n-dimensional spaces are
isomorphic to £2(n) and consequently mutually isomorphic.

which span(T) =V (that is, the set of all linear combinations of elements Proof. If £ is an n-dimensional Euclidean space then there is, by Theorem
of T; Prugovecki denotes the space of T as (T)). T is a finite set when S 1.1.2, a set of n vectors fi, fp, ... f, spanning £. By Theorem 1.2.4, there is
is a finite set. an orthonormal system of n vectors ey, e,..., e, which also spaces £.

Consider the mapping f — [(e1 | r),{ex | f),...,(en | f)]T. Itis to be
shown that this mapping is an isomorphism between £ and £2(n) in

Proof (continued). So (e; | ) = §; for i,j =1,2,...,n—1,n and by Exercise 1.2.7 0

induction T is orthonormal. O

0 Modern Alebrs Nowember26, 2008 16/15 | Moder Algbe November 26,2018 15 /15



