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I.2. Euclidean (pre-Hilbert) Spaces—Proofs of Theorems
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Theorem I.2.1

Theorem I.2.1

Theorem I.2.1. In a Euclidean space E , the inner product 〈f | g〉 satisfies
the relations:

(a) 〈af | g〉 = a∗〈f | g〉, and

(b) 〈f + g | h〉 = 〈f | h〉+ 〈g | h〉
for all f , g , h ∈ E and for every scalar a.

Proof. We have

〈af | g〉 = 〈g | af 〉∗ by Definition I.2.1(2)

= (a〈g | f 〉)∗ by Definition I.2.1(3)

= a∗〈g | f 〉∗ since (z1z2)∗ = z∗1 z∗2

= a∗〈f | g〉 by Definition I.2.1(2),

and. . .
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Theorem I.2.1

Theorem I.2.1 (continued)

Theorem I.2.1. In a Euclidean space E , the inner product 〈f | g〉 satisfies
the relations:

(a) 〈af | g〉 = a∗〈f | g〉, and

(b) 〈f + g | h〉 = 〈f | h〉+ 〈g | h〉
for all f , g , h ∈ E and for every scalar a.

Proof. . . .

〈f + g | h〉 = 〈h | f + g〉∗ by Definition I.2.1(2)

= (〈h | f 〉+ 〈h | g〉)∗ by Definition I.2.1(4)

= 〈h | f 〉∗ + 〈h | g〉∗ since (z1 + z2)∗ = z∗1 + z∗2

= 〈f | g〉+ 〈g | h〉 by Definition I.2.1(2).
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Theorem I.2.2. Schwarz-Cauchy Inequality

Theorem I.2.2

Theorem I.2.2. Schwarz-Cauchy Inequality.
Any two elements f , g of a Euclidean space E satisfies

|〈f | g〉|2 ≤ 〈f | f 〉〈g | g〉.

Proof. For any f , g ∈ E and any a ∈ C we have 〈f + ag | f + ag〉 ≥ 0 by
Definition I.2.1(1). If 〈f | g〉 = 0 then the result holds (again, by Definition
I.2.1(1)), so we can assume without loss of generality that 〈f | g〉 6= 0. Let
a = λ〈f | g〉∗/|〈f | g〉| where λ ∈ R. Then 〈f + ag | f + ag〉 ≥ 0 implies

〈f + ag | f + ag〉 = 〈f + ag | f 〉〈f + ag | ag〉 by Definition I.2.1(4)

= 〈f | f 〉+ 〈ag | f 〉+ 〈f | ag〉+ 〈ag | ag〉
by Theorem I.2.1(b)

= a∗a〈g | g〉+ 〈f | ag〉∗ + 〈f | ag〉+ 〈f | f 〉
by Definition I.2.1(2) . . .
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Theorem I.2.2. Schwarz-Cauchy Inequality

Theorem I.2.2 (continued 1)

Proof (continued). . . .

〈f + ag | f + ag〉 = |a|2〈g | g〉+ a∗〈f | g〉∗ + a〈f | g〉+ 〈f | f 〉
by Definition I.2.1(3)

=

∣∣∣∣λ 〈f | g〉∗|〈f | g〉|

∣∣∣∣2 〈g | g〉+ λ
〈f | g〉
|〈f | g〉|

〈f | g〉∗

+λ
〈f | g〉∗

|〈f | g〉|
〈f | g〉+ 〈f |〉

= λ2〈g | g〉+ 2λ|〈f | g〉|+ 〈f |〉
since |z∗| = |z | and z∗z = |z |2

≥ 0.

Define polynomial of real variable

p(λ) = λ2 + 〈g | g〉+ 2λ|λf | g〉|+ 〈f | f 〉.
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Theorem I.2.2. Schwarz-Cauchy Inequality

Theorem I.2.2 (continued 2)

Theorem I.2.2. Schwarz-Cauchy Inequality.
Any two elements f , g of a Euclidean space E satisfies

|〈f | g〉|2 ≤ 〈f | f 〉〈g | g〉.

Proof (continued). Then p(λ) is a second degree nonnegative concave
up polynomial and so it must have at most one root. This means the
discriminant from the quadratic equation must no non-positive. So we
need (2|〈f | g〉|)2 − 4(〈g | g〉)(〈f | f 〉) ≤ 0 or 〈f | g〉|2 ≤ 〈f | f 〉〈g | g〉, as
claimed.
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Theorem I.2.3

Theorem I.2.3

Theorem I.2.3. In a Euclidean space E with inner product 〈f | g〉, the
real-valued function ‖f ‖ =

√
〈f | f 〉 is a norm.

Proof. We check the four parts of Definition I.2.2.

(1) If f 6= 0 then 〈f | f 〉 > 0 by Definition I.2.1(1), so ‖f ‖ =
√
〈f | f 〉 > 0

for f 6= 0.

(2) 〈0 | 0〉 = 〈0 | 0 + 0〉 = 〈0 | 0 + 〈0 | 0〉 by Definition I.2.1(4), so that
〈0 | 0〉 = 0 and ‖0‖ =

√
〈0 | 0〉 = 0.

(3)

‖af ‖ =
√
〈af | af 〉 =

√
a∗a〈f | f 〉 by Definition I.2.1(3)

and Theorem I.2.1(a)

=
√

a∗a
√
〈f | f 〉 = |a|‖f ‖ since |z |2 = z∗z .
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Theorem I.2.3

Theorem I.2.3 (continued)

Proof (continued). (4) For the Triangle Inequality, we have

‖f + g‖2 = 〈f + g | f + g〉
= 〈f | f 〉+ 〈f | g〉+ 〈g | f 〉+ 〈g | g〉

by Definition I.2.1(4) and Theorem I.2.1(b)

= ‖f ‖2 + 〈f | g〉+ 〈f | g〉∗ + 〈g | g〉 by Definition I.2.1(2)

= ‖f ‖2 + 2Re(〈f | g〉) + ‖g‖2 since z + z∗ = 2Re(z)

≤ ‖f ‖2 + r |Re(〈f | g〉)|+ ‖g‖2

≤ ‖f ‖2 + 2|〈f | g〉|+ ‖g‖2 since |Re(z)| ≤ |z |
≤ ‖f ‖2 + 2

√
〈f | f 〉〈g | g〉+ ‖g‖2

by Schwarz-Cauchy Inequality (Theorem I.2.2)

= ‖f ‖2 + 2‖f ‖‖g‖+ ‖g‖2 = (‖f ‖+ ‖g‖)2,

and so ‖f + g‖ ≤ ‖f ‖+ ‖g‖.
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Theorem I.2.4

Theorem I.2.4

Theorem I.2.4. If S is a finite of countably infinite set of vectors in a
Euclidean space E and V is the vector subspace of E spanned by S , then
there is an orthonormal system T of vectors which spans V; that is, for
which span(T ) = V (that is, the set of all linear combinations of elements
of T ; Prugovečki denotes the space of T as (T )). T is a finite set when S
is a finite set.

Proof. Let S = {f1f2, . . .}. Define g1 to be the first nonzero vector in S .
Then recursively define gn for n ≥ 2 as gn = fm where m is the minimum
index such that {g1, g2, . . . , gn−1, fn} is linearly independent; if no such m
exists, take S0 = {g1, g2, . . . , gn−1} (so if S0 is finite then Tfinite). Then
S0 = {g1, g2, . . .}. Notice that S0 is linearly independent and
span(S0) = span(S). We now create orthonormal set T from S0 using the
Gram-Schmidt process (or the “Schmidt orthonormalization procedure”).
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Theorem I.2.4

Theorem I.2.4 (continued 1)

Proof (continued). Since g 6= 0, let e1 = g1/‖g1‖. Then recursively
define en for n ≥ 2 in terms of gn and e1, e2, . . . , en−1 as

en =
gn − 〈en−1 | gn〉en−1 − 〈en−2 | gn〉en−2 − · · · − 〈e1 | gn〉e1

‖gn − 〈en−1 | gn〉en−1 − 〈en−2 | gn〉en−2 − · · · − 〈e1 | gn〉e1‖
.

We now show the denominator here is nonzero. ASSUME

gn − 〈en−1 | gn〉en−1 − 〈en−2 | gn〉en−2 − · · · − 〈e1 | gn〉e1 = 0.

We have such gn expanded as a linear combination of e1, e2, . . . , ek (so
span(g1, g2, . . . , gk) ⊂ span(e1, e2, . . . , ek)) and so we can solve for gk as
follows (where c`, are scalars):

g1 = c11e1

g2 = c21e1 + c22e2

...

gn−1 = cn−1,1e1 + cn−1,2e2 + · · ·+ cn−1,n−1en−1.
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Theorem I.2.4

Theorem I.2.4 (continued 2)

Proof (continued). We can inductively solve this system of equations for
e1 in terms of g1, solve for e2 in terms of g1 and g2, . . . , solve for en−1 in
terms of g1, g2, . . . , gn−1 (this is sometimes called “back substitution”).
This implies span(e1, e2, . . . , ek) ⊂ span(g1, g2, . . . , gk) and hence
span(e1, e2, . . . , ek) = span(g1, g2, . . . , gk) and
span(T ) = span(S0) = span(S). If the assumed equality holds then gn is a
linear combination of e1, e2, . . . , en−1, but then we can substitute for ei its
expression in terms of g1, g2, . . . , gi (for 1 ≤ i ≤ n − 1) and then we can
express gn as a linear combination of g1, g2, . . . , gn−1, CONTRADICTING
the choice of gn. So the denominator in the formula for en is not 0 and en

is defined.
The vectors in I = {e1, e2, . . .} are unit vectors (i.e., normalized). We now

show orthogonality. Let δij =

{
1 if i = j
0 if i 6= j

. We give an induction

argument.
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Theorem I.2.4

Theorem I.2.4 (continued 3)

Proof (continued). Suppose we have shown that 〈ei | ej〉 = δij for
i , j = 1, 2, . . . , n − 1. Then for m < n

〈em | en〉 =

〈
em

∣∣∣∣ gn − 〈en−1 | gn〉en−1 − · · · − 〈e1 | gn〉e1

‖gn − 〈en−1 | gn〉en−1 − · · · − 〈e1 | gn〉e1‖

〉
=

1

‖gn − 〈en−1 | gn〉en−1 − · · · − 〈e1 | gn〉e1‖
×(

〈em | gn〉 −
n−1∑
k=1

〈ek | gn〉〈em | ek〉

)

=
1

‖gn − 〈en−1 | gn〉en−1 − · · · − 〈e1 | gn〉e1‖
×(

〈em | gn〉 −
n−1∑
k=1

〈ek | gn〉δmk

)
= 0.
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Theorem I.2.4

Theorem I.2.4 (continued 4)

Theorem I.2.4. If S is a finite of countably infinite set of vectors in a
Euclidean space E and V is the vector subspace of E spanned by S , then
there is an orthonormal system T of vectors which spans V; that is, for
which span(T ) = V (that is, the set of all linear combinations of elements
of T ; Prugovečki denotes the space of T as (T )). T is a finite set when S
is a finite set.

Proof (continued). So 〈ei | ej〉 = δij for i , j = 1, 2, . . . , n − 1, n and by
induction T is orthonormal.
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Theorem I.2.5

Theorem I.2.5

Theorem I.2.5. All complex Euclidean n-dimensional spaces are
isomorphic to `2(n) and consequently mutually isomorphic.

Proof. If E is an n-dimensional Euclidean space then there is, by Theorem
I.1.2, a set of n vectors f1, f2, . . . fn spanning E . By Theorem I.2.4, there is
an orthonormal system of n vectors e1, e2, . . . , en which also spaces E .
Consider the mapping f 7→ [〈e1 | r〉, 〈e2 | f 〉, . . . , 〈en | f 〉]T . It is to be
shown that this mapping is an isomorphism between E and `2(n) in
Exercise I.2.7.
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