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Theorem 1.2.1

Theorem 1.2.1. In a Euclidean space &, the inner product (f | g) satisfies
the relations:

(a) (af | g) =a*(f | g), and
(b) (F+glh)y=(f|h)+(g]|h

for all f, g, h € £ and for every scalar a.
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Theorem 1.2.1

Theorem 1.2.1. In a Euclidean space &, the inner product (f | g) satisfies
the relations:

(a) (af | g) =a*(f | g), and
(b) (F+glh)y=(f|h)+(g]|h

for all f, g, h € £ and for every scalar a.

Proof. We have

(af | g) = (g| af)* by Definition 1.2.1(2)
= (alg | f))* by Definition 1.2.1(3)

= a"(g| )" since (ziz)x = 2z, z5
a*(f | g) by Definition 1.2.1(2),

and. ..
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Theorem 1.2.1 (continued)

Theorem 1.2.1. In a Euclidean space &, the inner product (f | g) satisfies
the relations:

(a) (af [ g) =a"(f | g), and
(b) {(f+glh=(flh+(glh
for all f, g, h € £ and for every scalar a.

Proof. ...
(f+g|h = (h|f+g)* by Definition 1.2.1(2)
((h|f)+(h]| g))" by Definition 1.2.1(4)
= (h|f)*+(h|g)" since (z1 +z)x=2z{ + 2z
= (f | g)+ (g | h) by Definition 1.2.1(2).

O
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Theorem 1.2.2

Theorem 1.2.2. Schwarz-Cauchy Inequality.
Any two elements f, g of a Euclidean space £ satisfies

(F ) <(F|f)gleg).
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Theorem 1.2.2

Theorem 1.2.2. Schwarz-Cauchy Inequality.
Any two elements f, g of a Euclidean space £ satisfies

[(F e <(Flf)egle).

Proof. For any f,g € £ and any a € C we have (f +ag | f + ag) >0 by
Definition 1.2.1(1). If (f | g) = 0 then the result holds (again, by Definition
1.2.1(1)), so we can assume without loss of generality that (f | g) # 0. Let
a=M\f|g)*/|(f | g)| where A € R. Then (f 4+ ag | f + ag) > 0 implies

(f+ag|f+ag) = (f+ag|f)f+ag]|ag) by Definition 12.1(4)

= (Flf)+(ag|f)+(f]ag)+(ag|ag)
by Theorem 1.2.1(b)

= a'alg|g)+(flag)" +(f|ag)+(f|f)
by Definition 1.2.1(2) ...
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Theorem 1.2.2 (continued 1)

Proof (continued). ...

(f+ag|f+ag) = la*(glg)+a™(flg) +alf|g)+(f|F)
by Definition 1.2.1(3)

(flg) | (flg)
’A|<f|g> €& ALET g
(flg)”
+A‘<f‘g>,<f\g>+<f )
= Xglg)+2\(f|g)+(f])
since |z*| = |z| and z*z = |z|?

0.

(flg)”

Y

Modern Algebra November 26, 2018 6 / 15



Theorem 1.2.2 (continued 1)

Proof (continued). ...

(f+ag|f+ag) = la*(glg)+a™(flg) +alf|g)+(f|F)
by Definition 1.2.1(3)

(flg) | (flg)
’A|<f|g> €& ALET g
(flg)”
+A‘<f‘g>,<f\g>+<f )
= Xglg)+2\(f|g)+(f])
since |z*| = |z| and z*z = |z|?
> 0.

(flg)”

Define polynomial of real variable
p(A) =N+ (g | &) +2Af | ) + (f | f).
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Theorem 1.2.2 (continued 2)

Theorem 1.2.2. Schwarz-Cauchy Inequality.
Any two elements f, g of a Euclidean space & satisfies

(FIe)> < (f|f)g]g).

Proof (continued). Then p()) is a second degree nonnegative concave
up polynomial and so it must have at most one root. This means the
discriminant from the quadratic equation must no non-positive. So we

nleed (jl<f &) —4(lg [ e)(f | f)) <0or (f|g)f <(f|f)g|g) as
claimed. L]
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Theorem 1.2.3

Theorem 1.2.3. In a Euclidean space £ with inner product (f | g), the
real-valued function ||f|| = \/(f | f) is a norm.
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Theorem 1.2.3

Theorem 1.2.3. In a Euclidean space £ with inner product (f | g), the
real-valued function ||f|| = \/(f | f) is a norm.

Proof. We check the four parts of Definition 1.2.2.
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Theorem 1.2.3

Theorem 1.2.3

Theorem 1.2.3. In a Euclidean space £ with inner product (f | g), the
real-valued function ||f|| = \/(f | f) is a norm.

Proof. We check the four parts of Definition 1.2.2.

(1) If £ # 0 then (f | f) > 0 by Definition 1.2.1(1), so ||f|| = /(f | f) >0
for f #£0.
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Theorem 1.2.3
Theorem 1.2.3. In a Euclidean space £ with inner product (f | g), the
real-valued function ||f|| = \/(f | f) is a norm.

Proof. We check the four parts of Definition 1.2.2.

(1) If £ # 0 then (f | f) > 0 by Definition 1.2.1(1), so ||f|| = /(f | f) >0
for f #£0.

(2) (0]0)=(0|0+0)=(0]|0+(0|0) by Definition 1.2.1(4), so that
(0] 0) =0 and ||0]| = \/{0 | 0) = 0.
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Theorem 1.2.3

Theorem 1.2.3. In a Euclidean space £ with inner product (f | g), the
real-valued function ||f|| = \/(f | f) is a norm.

Proof. We check the four parts of Definition 1.2.2.

(1) If £ # 0 then (f | f) > 0 by Definition 1.2.1(1), so ||f|| = /(f | f) >0
for f #£0.

(2) (0]0)=(0|0+0)=(0]|0+(0|0) by Definition 1.2.1(4), so that

(010) =0 and |0 = \/{0[0) = 0.
(3)

laf|| = +/(af | af) = \/a*a(f | ) by Definition 1.2.1(3)
and Theorem 1.2.1(a)
Va*ay/(f | f) = |a|||f| since |z|*> = z*z.
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Theorem 1.2.3 (continued)
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Theorem 1.2.3 (continued)

Proof (continued). (4) For the Triangle Inequality, we have

If + gl =

ININ TN

(f+glf+g)

(FIf)y+(flg)+(g|f)+(g|eg)

by Definition 1.2.1(4) and Theorem 1.2.1(b)

IFI>+(f | g) + (f| g)* + (g | g by Definition 1.2.1(2)
IF]> + 2Re({f | g)) + llg||* since z + z* = 2Re(z)
11>+ rIRe((f | &))| + llgl?

IF11? +2/(f | g)| + llg||® since |Re(z)| < |z|
IFI2+2V/(F| F)(g | &)+ lgl?

by Schwarz-Cauchy Inequality (Theorem 1.2.2)

IF12 -+ 20 flllell + llgll® = (IFIl =+ llgl)?,

and so |[f + g]| < [[f]| + |[g]| O
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Theorem 1.2.4

Theorem 1.2.4. If S is a finite of countably infinite set of vectors in a
Euclidean space £ and V is the vector subspace of £ spanned by S, then
there is an orthonormal system T of vectors which spans V; that is, for
which span(T) =V (that is, the set of all linear combinations of elements
of T; Prugovelki denotes the space of T as (T)). T is a finite set when S
is a finite set.
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Theorem 1.2.4

Theorem 1.2.4. If S is a finite of countably infinite set of vectors in a
Euclidean space £ and V is the vector subspace of £ spanned by S, then
there is an orthonormal system T of vectors which spans V; that is, for
which span(T) =V (that is, the set of all linear combinations of elements
of T; Prugovetki denotes the space of T as (T)). T is a finite set when S
is a finite set.

Proof. Let S = {fifp,...}. Define g1 to be the first nonzero vector in S.

Then recursively define g, for n > 2 as g, = f,,, where m is the minimum

index such that {g1,82,...,8n—1, fn} is linearly independent; if no such m
exists, take So = {g1,82,...,8n—1} (so if Sp is finite then Tfinite). Then

So = {g1,82,...}. Notice that Sp is linearly independent and

span(Sp) = span(S). We now create orthonormal set T from Sy using the
Gram-Schmidt process (or the “Schmidt orthonormalization procedure™).
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Theorem 1.2.4

Theorem 1.2.4 (continued 1)

Proof (continued). Since g # 0, let e; = g1/|/g1||- Then recursively

define e, for n > 2 in terms of g, and e1, e,...,e,-1 as
o — 8n — <en—1 ‘ gn>en—1 - <en—2 ‘ gn>en—2 — = <el ‘ gn>el
! lgn — (en—1| gn)en—1 — (en—2 | gn)en—2 —--- — (e1 | gn>el‘|'

We now show the denominator here is nonzero.
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Theorem 1.2.4 (continued 1)

Proof (continued). Since g # 0, let e; = g1/|/g1||- Then recursively

define e, for n > 2 in terms of g, and e1, e,...,e,-1 as
o — 8n — <en—1 ‘ gn>en—1 - <en—2 ‘ gn>en—2 — = <el ‘ gn>el
! lgn — (en—1| gn)en—1 — (en—2 | gn)en—2 —--- — (e1 | gn>el‘|'

We now show the denominator here is nonzero. ASSUME
8n — <en—1 ’ gn>en—1 - <en—2 ‘ gn>en—2 — = <el ‘ gn>el =0.

We have such g, expanded as a linear combination of e, e,. .., ex (so
span(gi1, &2, ---,8k) C span(e1, ez,...,€ex)) and so we can solve for gy as
follows (where ¢, are scalars):

81 = <aiéa
& = 1€e1+ e
gh-1 = Cp-11€1+ Cp-12€2+ -+ Ch—1,n-1€n—1-
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Theorem 1.2.4 (continued 2)

Proof (continued). We can inductively solve this system of equations for
e1 in terms of gy, solve for e in terms of g1 and g», ..., solve for e,_1 in
terms of g1, &2, ...,8n—1 (this is sometimes called “back substitution™).
This implies span(ey, ey, ..., ex) C span(gi, &2, .-, 8k) and hence
span(er, e, ..., ex) = span(gi, &, - - ., 8«) and

span(T) = span(Sp) = span(S). If the assumed equality holds then g, is a
linear combination of e, es,...,e,_1, but then we can substitute for ¢; its
expression in terms of g1, g2,...,8 (for 1 << n—1) and then we can
express g, as a linear combination of g1, 42, ..., 4,1, CONTRADICTING
the choice of g,. So the denominator in the formula for e, is not 0 and e,
is defined.
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Theorem 1.2.4 (continued 2)

Proof (continued). We can inductively solve this system of equations for
e1 in terms of gy, solve for e in terms of g1 and g», ..., solve for e,_1 in
terms of g1, &2, ...,8n—1 (this is sometimes called “back substitution™).
This implies span(ey, ey, ..., ex) C span(gi, &2, .-, 8k) and hence

span(er, e, ..., ex) = span(gi, &, - - ., 8«) and

span(T) = span(Sp) = span(S). If the assumed equality holds then g, is a
linear combination of e, es,...,e,_1, but then we can substitute for ¢; its
expression in terms of g1, g2,...,8 (for 1 << n—1) and then we can
express g, as a linear combination of g1, 42, ..., 4,1, CONTRADICTING
the choice of g,. So the denominator in the formula for e, is not 0 and e,
is defined.

The vectors in | = {e1, e,...} are unit vectors (i.e., normalized). We now
lifi=j

0ifij We give an induction

show orthogonality. Let d;; = {

argument.
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Theorem 1.2.4 (continued 3)

Proof (continued). Suppose we have shown that (e; | e;) = J;; for
i,j=1,2,...,n—1. Then for m<n

(em| &) = <e 8n—(en—1|gn)en1—--- —(e1 | gn)er >
lgn — (en—1 | gn)en—1— -+ —(e1 | gn)en |
llgn — (en—1| gn)en—1— - —(e1 | gn)e1]|
n—1
<<em | gn) — D (e | gn){em | ek))
k=1
lgn — (en—1 | gn)en-1— -+ —(e1 | gn)en |
n—1
<<em | &n) — Z<ek ’ gn>5mk> =0.
k=1
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Theorem 1.2.4 (continued 4)

Theorem 1.2.4. If S is a finite of countably infinite set of vectors in a
Euclidean space £ and V is the vector subspace of £ spanned by S, then
there is an orthonormal system T of vectors which spans V; that is, for
which span(T) =V (that is, the set of all linear combinations of elements
of T; Prugovetki denotes the space of T as (T)). T is a finite set when S
is a finite set.

Proof (continued). So (e; | ¢j) = ¢;; for i,j =1,2,...,n—1,n and by

induction T is orthonormal. O
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Theorem 1.2.5

Theorem 1.2.5. All complex Euclidean n-dimensional spaces are
isomorphic to #2(n) and consequently mutually isomorphic.
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Theorem 1.2.5

Theorem 1.2.5. All complex Euclidean n-dimensional spaces are
isomorphic to #2(n) and consequently mutually isomorphic.

Proof. If £ is an n-dimensional Euclidean space then there is, by Theorem
[.1.2, a set of n vectors fi, f>, ... f, spanning £. By Theorem 1.2.4, there is
an orthonormal system of n vectors e;, e, ..., e, which also spaces £.
Consider the mapping f — [(e1 | r),(ex | f),...,(en | F)]T. It is to be
shown that this mapping is an isomorphism between £ and £2(n) in
Exercise 1.2.7. ]
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