Modern Algebra

Chapter I. Basic Ideas of Hilbert Space Theory I.2. Euclidean (pre-Hilbert) Spaces—Proofs of Theorems

2 Theorem I.2.2. Schwarz-Cauchy Inequality

3 Theorem I.2.3

Theorem I.2.1. In a Euclidean space \mathcal{E} , the inner product $\langle f | g \rangle$ satisfies the relations:

(a)
$$\langle af | g \rangle = a^* \langle f | g \rangle$$
, and
(b) $\langle f + g | h \rangle = \langle f | h \rangle + \langle g | h \rangle$
for all $f, g, h \in \mathcal{E}$ and for every scalar a .

Proof. We have

$$\langle af | g \rangle = \langle g | af \rangle^*$$
 by Definition I.2.1(2)
= $(a\langle g | f \rangle)^*$ by Definition I.2.1(3)
= $a^*\langle g | f \rangle^*$ since $(z_1z_2)^* = z_1^*z_2^*$
= $a^*\langle f | g \rangle$ by Definition I.2.1(2),

and...

Theorem I.2.1. In a Euclidean space \mathcal{E} , the inner product $\langle f | g \rangle$ satisfies the relations:

(a)
$$\langle af | g \rangle = a^* \langle f | g \rangle$$
, and
(b) $\langle f + g | h \rangle = \langle f | h \rangle + \langle g | h \rangle$

for all $f, g, h \in \mathcal{E}$ and for every scalar a.

Proof. We have

$$\begin{array}{lll} \langle af \mid g \rangle &=& \langle g \mid af \rangle^* \text{ by Definition I.2.1(2)} \\ &=& (a \langle g \mid f \rangle)^* \text{ by Definition I.2.1(3)} \\ &=& a^* \langle g \mid f \rangle^* \text{ since } (z_1 z_2) * = z_1^* z_2^* \\ &=& a^* \langle f \mid g \rangle \text{ by Definition I.2.1(2),} \end{array}$$

and...

Theorem I.2.1 (continued)

Theorem I.2.1. In a Euclidean space \mathcal{E} , the inner product $\langle f \mid g \rangle$ satisfies the relations:

(a)
$$\langle af | g \rangle = a^* \langle f | g \rangle$$
, and
(b) $\langle f + g | h \rangle = \langle f | h \rangle + \langle g | h \rangle$

for all $f, g, h \in \mathcal{E}$ and for every scalar a.

Proof. ...

Theorem I.2.2. Schwarz-Cauchy Inequality.

Any two elements f, g of a Euclidean space \mathcal{E} satisfies

 $|\langle f \mid g \rangle|^2 \leq \langle f \mid f \rangle \langle g \mid g \rangle.$

Proof. For any $f, g \in \mathcal{E}$ and any $a \in \mathbb{C}$ we have $\langle f + ag \mid f + ag \rangle \ge 0$ by Definition I.2.1(1). If $\langle f \mid g \rangle = 0$ then the result holds (again, by Definition I.2.1(1)), so we can assume without loss of generality that $\langle f \mid g \rangle \ne 0$. Let $a = \lambda \langle f \mid g \rangle^* / |\langle f \mid g \rangle|$ where $\lambda \in \mathbb{R}$. Then $\langle f + ag \mid f + ag \rangle \ge 0$ implies

$$\langle f + ag \mid f + ag \rangle = \langle f + ag \mid f \rangle_{\langle} f + ag \mid ag \rangle$$
 by Definition I.2.1(4)
$$= \langle f \mid f \rangle + \langle ag \mid f \rangle + \langle f \mid ag \rangle + \langle ag \mid ag \rangle$$
 by Theorem I.2.1(b)
$$= a^* a \langle g \mid g \rangle + \langle f \mid ag \rangle^* + \langle f \mid ag \rangle + \langle f \mid f \rangle$$

by Definition I.2.1(2)...

Theorem I.2.2. Schwarz-Cauchy Inequality.

Any two elements f, g of a Euclidean space \mathcal{E} satisfies

 $|\langle f \mid g \rangle|^2 \leq \langle f \mid f \rangle \langle g \mid g \rangle.$

Proof. For any $f, g \in \mathcal{E}$ and any $a \in \mathbb{C}$ we have $\langle f + ag \mid f + ag \rangle \ge 0$ by Definition I.2.1(1). If $\langle f \mid g \rangle = 0$ then the result holds (again, by Definition I.2.1(1)), so we can assume without loss of generality that $\langle f \mid g \rangle \ne 0$. Let $a = \lambda \langle f \mid g \rangle^* / |\langle f \mid g \rangle|$ where $\lambda \in \mathbb{R}$. Then $\langle f + ag \mid f + ag \rangle \ge 0$ implies

Theorem I.2.2 (continued 1)

Proof (continued). ...

$$\langle f + ag \mid f + ag \rangle = |a|^2 \langle g \mid g \rangle + a^* \langle f \mid g \rangle^* + a \langle f \mid g \rangle + \langle f \mid f \rangle$$

by Definition I.2.1(3)
$$= \left| \lambda \frac{\langle f \mid g \rangle^*}{|\langle f \mid g \rangle|} \right|^2 \langle g \mid g \rangle + \lambda \frac{\langle f \mid g \rangle}{|\langle f \mid g \rangle|} \langle f \mid g \rangle^*$$

$$+ \lambda \frac{\langle f \mid g \rangle^*}{|\langle f \mid g \rangle|} \langle f \mid g \rangle + \langle f \mid \rangle$$

$$= \lambda^2 \langle g \mid g \rangle + 2\lambda |\langle f \mid g \rangle| + \langle f \mid \rangle$$

since $|z^*| = |z|$ and $z^*z = |z|^2$
$$\ge 0.$$

Define polynomial of real variable

$$p(\lambda) = \lambda^2 + \langle g \mid g \rangle + 2\lambda |\lambda f \mid g \rangle | + \langle f \mid f \rangle.$$

Theorem I.2.2 (continued 1)

Proof (continued). ...

$$\langle f + ag \mid f + ag \rangle = |a|^2 \langle g \mid g \rangle + a^* \langle f \mid g \rangle^* + a \langle f \mid g \rangle + \langle f \mid f \rangle$$

by Definition I.2.1(3)
$$= \left| \lambda \frac{\langle f \mid g \rangle^*}{|\langle f \mid g \rangle|} \right|^2 \langle g \mid g \rangle + \lambda \frac{\langle f \mid g \rangle}{|\langle f \mid g \rangle|} \langle f \mid g \rangle^*$$

$$+ \lambda \frac{\langle f \mid g \rangle^*}{|\langle f \mid g \rangle|} \langle f \mid g \rangle + \langle f \mid \rangle$$

$$= \lambda^2 \langle g \mid g \rangle + 2\lambda |\langle f \mid g \rangle| + \langle f \mid \rangle$$

since $|z^*| = |z|$ and $z^*z = |z|^2$
$$\ge 0.$$

Define polynomial of real variable

$$p(\lambda) = \lambda^2 + \langle g \mid g \rangle + 2\lambda |\lambda f \mid g \rangle | + \langle f \mid f \rangle.$$

Theorem I.2.2 (continued 2)

Theorem I.2.2. Schwarz-Cauchy Inequality.

Any two elements f, g of a Euclidean space \mathcal{E} satisfies

 $|\langle f | g \rangle|^2 \leq \langle f | f \rangle \langle g | g \rangle.$

Proof (continued). Then $p(\lambda)$ is a second degree nonnegative concave up polynomial and so it must have at most one root. This means the discriminant from the quadratic equation must no non-positive. So we need $(2|\langle f \mid g \rangle|)^2 - 4(\langle g \mid g \rangle)(\langle f \mid f \rangle) \leq 0$ or $\langle f \mid g \rangle|^2 \leq \langle f \mid f \rangle \langle g \mid g \rangle$, as claimed.

Theorem I.2.3. In a Euclidean space \mathcal{E} with inner product $\langle f | g \rangle$, the real-valued function $||f|| = \sqrt{\langle f | f \rangle}$ is a norm.

Proof. We check the four parts of Definition 1.2.2.

Theorem I.2.3. In a Euclidean space \mathcal{E} with inner product $\langle f | g \rangle$, the real-valued function $||f|| = \sqrt{\langle f | f \rangle}$ is a norm.

Proof. We check the four parts of Definition I.2.2.

(1) If $f \neq 0$ then $\langle f \mid f \rangle > 0$ by Definition I.2.1(1), so $||f|| = \sqrt{\langle f \mid f \rangle} > 0$ for $f \neq 0$.

Theorem I.2.3. In a Euclidean space \mathcal{E} with inner product $\langle f | g \rangle$, the real-valued function $||f|| = \sqrt{\langle f | f \rangle}$ is a norm.

Proof. We check the four parts of Definition I.2.2.

(1) If $f \neq \mathbf{0}$ then $\langle f \mid f \rangle > 0$ by Definition I.2.1(1), so $||f|| = \sqrt{\langle f \mid f \rangle} > 0$ for $f \neq \mathbf{0}$.

(2) $\langle \mathbf{0} | \mathbf{0} \rangle = \langle \mathbf{0} | \mathbf{0} + \mathbf{0} \rangle = \langle \mathbf{0} | \mathbf{0} + \langle \mathbf{0} | \mathbf{0} \rangle$ by Definition I.2.1(4), so that $\langle \mathbf{0} | \mathbf{0} \rangle = 0$ and $\|\mathbf{0}\| = \sqrt{\langle \mathbf{0} | \mathbf{0} \rangle} = 0$.

Theorem I.2.3. In a Euclidean space \mathcal{E} with inner product $\langle f | g \rangle$, the real-valued function $||f|| = \sqrt{\langle f | f \rangle}$ is a norm.

Proof. We check the four parts of Definition I.2.2.

(1) If $f \neq 0$ then $\langle f \mid f \rangle > 0$ by Definition I.2.1(1), so $||f|| = \sqrt{\langle f \mid f \rangle} > 0$ for $f \neq 0$.

(2) $\langle \mathbf{0} | \mathbf{0} \rangle = \langle \mathbf{0} | \mathbf{0} + \mathbf{0} \rangle = \langle \mathbf{0} | \mathbf{0} + \langle \mathbf{0} | \mathbf{0} \rangle$ by Definition I.2.1(4), so that $\langle \mathbf{0} | \mathbf{0} \rangle = 0$ and $\|\mathbf{0}\| = \sqrt{\langle \mathbf{0} | \mathbf{0} \rangle} = 0$.

(3)

$$\|af\| = \sqrt{\langle af \mid af \rangle} = \sqrt{a^*a\langle f \mid f \rangle} \text{ by Definition I.2.1(3)}$$

and Theorem I.2.1(a)
$$= \sqrt{a^*a}\sqrt{\langle f \mid f \rangle} = |a|||f|| \text{ since } |z|^2 = z^*z.$$

Theorem I.2.3. In a Euclidean space \mathcal{E} with inner product $\langle f | g \rangle$, the real-valued function $||f|| = \sqrt{\langle f | f \rangle}$ is a norm.

Proof. We check the four parts of Definition I.2.2.

(1) If $f \neq 0$ then $\langle f \mid f \rangle > 0$ by Definition I.2.1(1), so $||f|| = \sqrt{\langle f \mid f \rangle} > 0$ for $f \neq 0$.

(2) $\langle \mathbf{0} | \mathbf{0} \rangle = \langle \mathbf{0} | \mathbf{0} + \mathbf{0} \rangle = \langle \mathbf{0} | \mathbf{0} + \langle \mathbf{0} | \mathbf{0} \rangle$ by Definition I.2.1(4), so that $\langle \mathbf{0} | \mathbf{0} \rangle = 0$ and $\|\mathbf{0}\| = \sqrt{\langle \mathbf{0} | \mathbf{0} \rangle} = 0$.

(3)

$$\|af\| = \sqrt{\langle af \mid af \rangle} = \sqrt{a^*a\langle f \mid f \rangle} \text{ by Definition I.2.1(3)}$$

and Theorem I.2.1(a)
$$= \sqrt{a^*a}\sqrt{\langle f \mid f \rangle} = |a| \|f\| \text{ since } |z|^2 = z^*z.$$

Theorem I.2.3 (continued)

Proof (continued). (4) For the Triangle Inequality, we have

$$\begin{split} \|f+g\|^2 &= \langle f+g \mid f+g \rangle \\ &= \langle f \mid f \rangle + \langle f \mid g \rangle + \langle g \mid f \rangle + \langle g \mid g \rangle \\ & \text{by Definition I.2.1(4) and Theorem I.2.1(b)} \\ &= \|f\|^2 + \langle f \mid g \rangle + \langle f \mid g \rangle^* + \langle g \mid g \rangle \text{ by Definition I.2.1(2)} \\ &= \|f\|^2 + 2\text{Re}(\langle f \mid g \rangle) + \|g\|^2 \text{ since } z + z^* = 2\text{Re}(z) \\ &\leq \|f\|^2 + r|\text{Re}(\langle f \mid g \rangle)| + \|g\|^2 \\ &\leq \|f\|^2 + 2|\langle f \mid g \rangle| + \|g\|^2 \text{ since } |\text{Re}(z)| \leq |z| \\ &\leq \|f\|^2 + 2\sqrt{\langle f \mid f \rangle \langle g \mid g \rangle} + \|g\|^2 \\ & \text{by Schwarz-Cauchy Inequality (Theorem I.2.2)} \\ &= \|f\|^2 + 2\|f\|\|g\| + \|g\|^2 = (\|f\| + \|g\|)^2, \end{split}$$

and so $||f + g|| \le ||f|| + ||g||$.

Theorem I.2.3 (continued)

Proof (continued). (4) For the Triangle Inequality, we have

$$\begin{split} \|f+g\|^2 &= \langle f+g \mid f+g \rangle \\ &= \langle f \mid f \rangle + \langle f \mid g \rangle + \langle g \mid f \rangle + \langle g \mid g \rangle \\ & \text{by Definition I.2.1(4) and Theorem I.2.1(b)} \\ &= \|f\|^2 + \langle f \mid g \rangle + \langle f \mid g \rangle^* + \langle g \mid g \rangle \text{ by Definition I.2.1(2)} \\ &= \|f\|^2 + 2\text{Re}(\langle f \mid g \rangle) + \|g\|^2 \text{ since } z + z^* = 2\text{Re}(z) \\ &\leq \|f\|^2 + r|\text{Re}(\langle f \mid g \rangle)| + \|g\|^2 \\ &\leq \|f\|^2 + 2|\langle f \mid g \rangle| + \|g\|^2 \text{ since } |\text{Re}(z)| \leq |z| \\ &\leq \|f\|^2 + 2\sqrt{\langle f \mid f \rangle \langle g \mid g \rangle} + \|g\|^2 \\ & \text{by Schwarz-Cauchy Inequality (Theorem I.2.2)} \\ &= \|f\|^2 + 2\|f\|\|g\| + \|g\|^2 = (\|f\| + \|g\|)^2, \end{split}$$

and so $||f + g|| \le ||f|| + ||g||$.

Theorem 1.2.4. If S is a finite of countably infinite set of vectors in a Euclidean space \mathcal{E} and \mathcal{V} is the vector subspace of \mathcal{E} spanned by S, then there is an orthonormal system T of vectors which spans \mathcal{V} ; that is, for which span $(T) = \mathcal{V}$ (that is, the set of all linear combinations of elements of T; Prugovečki denotes the space of T as (T)). T is a finite set when S is a finite set.

Proof. Let $S = \{f_1 f_2, \ldots\}$. Define g_1 to be the first nonzero vector in S. Then recursively define g_n for $n \ge 2$ as $g_n = f_m$ where m is the minimum index such that $\{g_1, g_2, \ldots, g_{n-1}, f_n\}$ is linearly independent; if no such m exists, take $S_0 = \{g_1, g_2, \ldots, g_{n-1}\}$ (so if S_0 is finite then T finite). Then $S_0 = \{g_1, g_2, \ldots\}$. Notice that S_0 is linearly independent and span $(S_0) = \text{span}(S)$. We now create orthonormal set T from S_0 using the Gram-Schmidt process (or the "Schmidt orthonormalization procedure").

Theorem I.2.4. If S is a finite of countably infinite set of vectors in a Euclidean space \mathcal{E} and \mathcal{V} is the vector subspace of \mathcal{E} spanned by S, then there is an orthonormal system T of vectors which spans \mathcal{V} ; that is, for which span $(T) = \mathcal{V}$ (that is, the set of all linear combinations of elements of T; Prugovečki denotes the space of T as (T)). T is a finite set when S is a finite set.

Proof. Let $S = \{f_1 f_2, \ldots\}$. Define g_1 to be the first nonzero vector in S. Then recursively define g_n for $n \ge 2$ as $g_n = f_m$ where m is the minimum index such that $\{g_1, g_2, \ldots, g_{n-1}, f_n\}$ is linearly independent; if no such m exists, take $S_0 = \{g_1, g_2, \ldots, g_{n-1}\}$ (so if S_0 is finite then T finite). Then $S_0 = \{g_1, g_2, \ldots\}$. Notice that S_0 is linearly independent and span $(S_0) =$ span(S). We now create orthonormal set T from S_0 using the Gram-Schmidt process (or the "Schmidt orthonormalization procedure").

Theorem I.2.4 (continued 1)

Proof (continued). Since $g \neq 0$, let $e_1 = g_1/||g_1||$. Then recursively define e_n for $n \ge 2$ in terms of g_n and $e_1, e_2, \ldots, e_{n-1}$ as

$$e_{n} = \frac{g_{n} - \langle e_{n-1} \mid g_{n} \rangle e_{n-1} - \langle e_{n-2} \mid g_{n} \rangle e_{n-2} - \dots - \langle e_{1} \mid g_{n} \rangle e_{1}}{\|g_{n} - \langle e_{n-1} \mid g_{n} \rangle e_{n-1} - \langle e_{n-2} \mid g_{n} \rangle e_{n-2} - \dots - \langle e_{1} \mid g_{n} \rangle e_{1}\|}.$$

We now show the denominator here is nonzero. ASSUME

$$g_n - \langle e_{n-1} \mid g_n \rangle e_{n-1} - \langle e_{n-2} \mid g_n \rangle e_{n-2} - \cdots - \langle e_1 \mid g_n \rangle e_1 = \mathbf{0}.$$

We have such g_n expanded as a linear combination of e_1, e_2, \ldots, e_k (so span $(g_1, g_2, \ldots, g_k) \subset \text{span}(e_1, e_2, \ldots, e_k)$) and so we can solve for g_k as follows (where c_{ℓ_1} are scalars):

$$g_1 = c_{11}e_1$$

 $g_2 = c_{21}e_1 + c_{22}e_2$
 \vdots

 $g_{n-1} = c_{n-1,1}e_1 + c_{n-1,2}e_2 + \cdots + c_{n-1,n-1}e_{n-1}.$

Theorem I.2.4 (continued 1)

Proof (continued). Since $g \neq 0$, let $e_1 = g_1/||g_1||$. Then recursively define e_n for $n \ge 2$ in terms of g_n and $e_1, e_2, \ldots, e_{n-1}$ as

$$e_n = \frac{g_n - \langle e_{n-1} \mid g_n \rangle e_{n-1} - \langle e_{n-2} \mid g_n \rangle e_{n-2} - \dots - \langle e_1 \mid g_n \rangle e_1}{\|g_n - \langle e_{n-1} \mid g_n \rangle e_{n-1} - \langle e_{n-2} \mid g_n \rangle e_{n-2} - \dots - \langle e_1 \mid g_n \rangle e_1\|}.$$

We now show the denominator here is nonzero. ASSUME

$$g_n - \langle e_{n-1} \mid g_n \rangle e_{n-1} - \langle e_{n-2} \mid g_n \rangle e_{n-2} - \cdots - \langle e_1 \mid g_n \rangle e_1 = \mathbf{0}.$$

We have such g_n expanded as a linear combination of e_1, e_2, \ldots, e_k (so span $(g_1, g_2, \ldots, g_k) \subset$ span (e_1, e_2, \ldots, e_k)) and so we can solve for g_k as follows (where c_{ℓ} , are scalars):

$$g_1 = c_{11}e_1$$

 $g_2 = c_{21}e_1 + c_{22}e_2$
 \vdots

 $g_{n-1} = c_{n-1,1}e_1 + c_{n-1,2}e_2 + \cdots + c_{n-1,n-1}e_{n-1}.$

Theorem I.2.4 (continued 2)

Proof (continued). We can inductively solve this system of equations for e_1 in terms of g_1 , solve for e_2 in terms of g_1 and g_2, \ldots , solve for e_{n-1} in terms of $g_1, g_2, \ldots, g_{n-1}$ (this is sometimes called "back substitution"). This implies span $(e_1, e_2, \ldots, e_k) \subset \text{span}(g_1, g_2, \ldots, g_k)$ and hence $span(e_1, e_2, ..., e_k) = span(g_1, g_2, ..., g_k)$ and $\operatorname{span}(T) = \operatorname{span}(S_0) = \operatorname{span}(S)$. If the assumed equality holds then g_n is a linear combination of $e_1, e_2, \ldots, e_{n-1}$, but then we can substitute for e_i its expression in terms of g_1, g_2, \ldots, g_i (for $1 \le i \le n-1$) and then we can express g_n as a linear combination of $g_1, g_2, \ldots, g_{n-1}$, CONTRADICTING the choice of g_n . So the denominator in the formula for e_n is not 0 and e_n is defined.

The vectors in
$$I = \{e_1, e_2, \ldots\}$$
 are unit vectors (i.e., normalized). We now show orthogonality. Let $\delta_{ij} = \begin{cases} 1 \text{ if } i = j \\ 0 \text{ if } i \neq j \end{cases}$. We give an induction

argument

Theorem I.2.4 (continued 2)

Proof (continued). We can inductively solve this system of equations for e_1 in terms of g_1 , solve for e_2 in terms of g_1 and g_2, \ldots , solve for e_{n-1} in terms of $g_1, g_2, \ldots, g_{n-1}$ (this is sometimes called "back substitution"). This implies span $(e_1, e_2, \ldots, e_k) \subset \text{span}(g_1, g_2, \ldots, g_k)$ and hence $span(e_1, e_2, ..., e_k) = span(g_1, g_2, ..., g_k)$ and span(T) = span(S_0) = span(S). If the assumed equality holds then g_n is a linear combination of $e_1, e_2, \ldots, e_{n-1}$, but then we can substitute for e_i its expression in terms of g_1, g_2, \ldots, g_i (for $1 \le i \le n-1$) and then we can express g_n as a linear combination of $g_1, g_2, \ldots, g_{n-1}$, CONTRADICTING the choice of g_n . So the denominator in the formula for e_n is not 0 and e_n is defined.

The vectors in $I = \{e_1, e_2, \ldots\}$ are unit vectors (i.e., normalized). We now show orthogonality. Let $\delta_{ij} = \begin{cases} 1 \text{ if } i = j \\ 0 \text{ if } i \neq j \end{cases}$. We give an induction argument.

Theorem I.2.4 (continued 3)

Proof (continued). Suppose we have shown that $\langle e_i | e_j \rangle = \delta_{ij}$ for i, j = 1, 2, ..., n - 1. Then for m < n

$$\begin{array}{lll} \langle e_m \mid e_n \rangle &=& \left\langle e_m \mid \frac{g_n - \langle e_{n-1} \mid g_n \rangle e_{n-1} - \dots - \langle e_1 \mid g_n \rangle e_1}{\|g_n - \langle e_{n-1} \mid g_n \rangle e_{n-1} - \dots - \langle e_1 \mid g_n \rangle e_1\|} \right\rangle \\ &=& \frac{1}{\|g_n - \langle e_{n-1} \mid g_n \rangle e_{n-1} - \dots - \langle e_1 \mid g_n \rangle e_1\|} \times \\ &=& \left(\langle e_m \mid g_n \rangle - \sum_{k=1}^{n-1} \langle e_k \mid g_n \rangle \langle e_m \mid e_k \rangle \right) \\ &=& \frac{1}{\|g_n - \langle e_{n-1} \mid g_n \rangle e_{n-1} - \dots - \langle e_1 \mid g_n \rangle e_1\|} \times \\ &=& \left(\langle e_m \mid g_n \rangle - \sum_{k=1}^{n-1} \langle e_k \mid g_n \rangle \delta_{mk} \right) = 0. \end{array}$$

Theorem I.2.4 (continued 4)

Theorem I.2.4. If S is a finite of countably infinite set of vectors in a Euclidean space \mathcal{E} and \mathcal{V} is the vector subspace of \mathcal{E} spanned by S, then there is an orthonormal system T of vectors which spans \mathcal{V} ; that is, for which span $(T) = \mathcal{V}$ (that is, the set of all linear combinations of elements of T; Prugovečki denotes the space of T as (T)). T is a finite set when S is a finite set.

Proof (continued). So $\langle e_i | e_j \rangle = \delta_{ij}$ for i, j = 1, 2, ..., n - 1, n and by induction T is orthonormal.

Theorem 1.2.5. All complex Euclidean *n*-dimensional spaces are isomorphic to $\ell^2(n)$ and consequently mutually isomorphic.

Proof. If \mathcal{E} is an *n*-dimensional Euclidean space then there is, by Theorem 1.1.2, a set of *n* vectors f_1, f_2, \ldots, f_n spanning \mathcal{E} . By Theorem 1.2.4, there is an orthonormal system of *n* vectors e_1, e_2, \ldots, e_n which also spaces \mathcal{E} . Consider the mapping $f \mapsto [\langle e_1 \mid r \rangle, \langle e_2 \mid f \rangle, \ldots, \langle e_n \mid f \rangle]^T$. It is to be shown that this mapping is an isomorphism between \mathcal{E} and $\ell^2(n)$ in Exercise 1.2.7.

Theorem 1.2.5. All complex Euclidean *n*-dimensional spaces are isomorphic to $\ell^2(n)$ and consequently mutually isomorphic.

Proof. If \mathcal{E} is an *n*-dimensional Euclidean space then there is, by Theorem I.1.2, a set of *n* vectors f_1, f_2, \ldots, f_n spanning \mathcal{E} . By Theorem I.2.4, there is an orthonormal system of *n* vectors e_1, e_2, \ldots, e_n which also spaces \mathcal{E} . Consider the mapping $f \mapsto [\langle e_1 \mid r \rangle, \langle e_2 \mid f \rangle, \ldots, \langle e_n \mid f \rangle]^T$. It is to be shown that this mapping is an isomorphism between \mathcal{E} and $\ell^2(n)$ in Exercise I.2.7.