Modern Algebra

Chapter |. Basic Ideas of Hilbert Space Theory
[.3. Metric Spaces—Proofs of Theorems
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Theorem 1.3.2

Theorem 1.3.2. Every incomplete metric space M can be embedded in a
complete metric space M, called the completion of M.

Proof. Let {£(1) £()
equivalence class containing the Cauchy sequence £() = {fgf)fék), ...} of
elements of M. We will construct a Cauchy sequence 7} € M which is the
limit of this given Cauchy sequence of equivalence classes

{€MW) €@} € M. For each k € N, choose element é’,(,“) € M such that

d(&g‘)gfﬁk)) < 1/k for all m > Ny for some positive N(1/k) (which can be

done since {égk},égk}g ...} is a Cauchy sequence); denote 7, = g,(f‘) so that

(/;'m ,Mk) < 1/k for m > N(1/k). Next, consider 7jx = {nk. 7k, ...} and
09 _ el ¢

..} be a Cauchy sequence in M, where £(¥) is the

..} in Ms. By choice of 7, and é,(Tf) we have
ds(€), k) = d(E5”,me) < 1/k.

— — cern A

November 26, 2018 1/9

November 26, 2018 4/9

Theorem 1.3.1

Theorem 1.3.1. If a sequence &;1.&>. ..., in a metric space M converges
to some £ € M then its limit is unique, and the sequence is a Cauchy
sequence.

Proof. If {&1,&2,...} converges to £ € M and to n € M then for any

€ > 0 there exists positive Ni(g) and Na(e) such that d(&,&,) < €/2 for
n> Ni(e) and d(1,&,) < €/2 for n > Na(g). Consequently, for

n > max{Ny(¢), N2(¢)} we have by the Triangle Inequality that

d(&,m) < d(& &) +d(nm) <e/2+e/2=¢.

Since € > 0 is arbitrary, then d(&,17) = 0 and so (by Definition 3.1(1) and
(2)), we have £ = 7 and so the limit of the sequence is unique.

If m,n > max{N;(¢), Na(¢)} then by the Triangle Inequality
d(&m,&n) < d(Em. &) +d(€,€n) <e/2+¢/

and so the convergent sequence is Cauchy. O
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L Theorem!32 ]
Theorem 1.3.2 (continued 1)

Proof (continued). By Exercise 1.3.6 (with constant sequence
= {&k, &k, . . .} of Exercise 1.3.6 replaced with constant sequence

”“‘) {gg‘), _Eff), ...} here, and sequence & = {£1,&,...} of Exercise 1.3.6

= {£00,609,...} here),
im _ds(éh’,E0) = 0.

Then by Exercise 1.3.5 (with arbitrary sequence 7 of exercise 1.3.5 replaced

with constant sequence 7j; here, and sequence {&1,&2, ...} convergent to &
“U<)

replaced with sequence E(

in Exercise 1.3.5 replaced W|th sequence {E{
argued is convergent to (k) , here),

Jim_ds(&.7ic) = ds(EY). i)

...}, which we just

Consequently,
ds(€K) 7)) = lim d £6) 5y < 1/k %
S(‘E '-r.’k) ! ] S(Em -”k) = / - ( )
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. Thoeml32]
Theorem 1.3.2 (continued 2)

Proof (continued). Now we have chosen an 7 such that

ik = {Nks Mk, - - -} satisfies (x) for each k € N. So this gives the sequence
i1 = {m.n2,...} which we now show is Cauchy and then show is the limit
of the given Cauchy sequence {£(1),£(3) ...} € M. We have

d(Mmsnn) = ds(fimijn), where ij, and ij, are constant

.} and 7jp = {nny My -
equality follows from the definition of ds on Mg

sequences m = {Nm, Nm., - -

< ds(iim E™) + ds(E™, EM) 4 ds(E), fim) by two
applications of the Triangle Inequality for ds, since ds
is a metric on M and each sequence here is Cauchy;
notice that £(™ £(") are Cauchy sequences here,
not equivalence classes
< 1/m+ds(E™,EM) + 1/n by ().
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Theorem 1.3.2 (continued 4)

Proof (continued). Since de(7}, 7jk) = ds(7], 7ik) (again, with
sequence/equivalence class caution), then Iimk_,x de(7, 7x) = 0. So, for k
sufficiently large, we see from (%) that dg(7j,£(K)) can be made arbitrarily
small. Therefore limg—oo £(K) = 7 in M and so arbitrary sequence

{€W £} in M converges in M. Hence, M is a compete metric
space.

Finally, we show that we can embed M in M. Let £ € M. Map £ € M
to the equivalence class ¢ € M containing the Cauchy sequence
{£,&,...}. This mapping is “clearly” one to one and isometric (since

d(&,m) = ds(€,7) = de(€,7)). Let M’ be the image of M under this
mapping. If EuM where equivalence class 7} contains Cauchy sequence
{m,m,...} € Ms.
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Theorem 1.3.2 (continued 3)

Proof (continued). Since {£(), ..} is a Cauchy sequence of
equivalence classes by hypothesis, then by making m and n sufficiently
large, we can make d(nm, 1) arbitrarily small (i.e., less than £ for any
given £ > 0). So sequence 7ij = {n1,72,...} is Cauchy and 7j € M.
Now let 7} also denote the equivalence class containing Cauchy sequence
{n1,m2,...}, so i € M. We have by the Triangle Inequality for metric dg
on M,

de (71, €M) < de (i, iix) + de(fix, €X))  (++)

where fj is the equivalence class in M containing Cauchy sequence
{Mks Mk, -} Now ds(EX), k) < 1/k by (x) and so de(§5), fj)k) < 1/k
(with the appropriate caution concerning equivalence classes and
sequences). By Exercise 1.3.6 (with sequences ¢ and &, of Exercise 1.3.6
replaced with sequences 7] and 7ji, respectively, here) we have

limk o0 ds (i}, 7ik) = 0.
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Theorem 1.3.2 (continued 5)

Theorem 1.3.2. Every incomplete metric space M can be embedded in a
complete metric space M, called the completion of M.

Proof (continued). Then for given ¢ > 0, by Exercise 1.3.6 (with
sequences{ and fk of Exercise 1.3.6 replaced with sequences

i = {m,n2,...} and 7jx = {nk, "k, ...} here), there is positive N(&) such
that for all k > N(c) we have ds(7},7jx) < . Since ds(7}, 7jx) = de(7}, Tk)
(caution!), this shows that M is everywhere dense in M. That is, metric
space M is densely embedded in complete metric space M, as

claimed. O
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