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Theorem I.3.1

Theorem I.3.1

Theorem I.3.1. If a sequence ξ1, ξ2, . . . , in a metric space M converges
to some ξ ∈M then its limit is unique, and the sequence is a Cauchy
sequence.

Proof. If {ξ1, ξ2, . . .} converges to ξ ∈M and to η ∈M then for any
ε > 0 there exists positive N1(ε) and N2(ε) such that d(ξ, ξn) < ε/2 for
n > N1(ε) and d(η, ξn) < ε/2 for n > N2(ε). Consequently, for
n > max{N1(ε),N2(ε)} we have by the Triangle Inequality that

d(ξ, η) ≤ d(ξ, ξn) + d(ξn, η) < ε/2 + ε/2 = ε.

Since ε > 0 is arbitrary, then d(ξ, η) = 0 and so (by Definition 3.1(1) and
(2)), we have ξ = η and so the limit of the sequence is unique.

If m, n > max{N1(ε),N2(ε)} then by the Triangle Inequality

d(ξm, ξn) ≤ d(ξm, ξ) + d(ξ, ξn) < ε/2 + ε/2 = ε

and so the convergent sequence is Cauchy.
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Theorem I.3.2

Theorem I.3.2

Theorem I.3.2. Every incomplete metric space M can be embedded in a
complete metric space M̃, called the completion of M.

Proof. Let {ξ̃(1), ξ̃(2), . . .} be a Cauchy sequence in M̃, where ξ̃(k) is the

equivalence class containing the Cauchy sequence ξ̃(k) = {ξ(k)
1 , ξ

(k)
2 , . . .} of

elements of M. We will construct a Cauchy sequence η̃ ∈ M̃ which is the
limit of this given Cauchy sequence of equivalence classes

{ξ̃(1), ξ̃(2), . . .} ∈ M̃.

For each k ∈ N, choose element ξ̃
(k)
n ∈M such that

d(ξ
(k)
m , ξ

(k)
n ) < 1/k for all m > Nk for some positive N(1/k) (which can be

done since {ξ(k)
1 , ξ

(k)
2 , . . .} is a Cauchy sequence); denote ηk = ξ

(k)
n so that

d(ξ
(k)
m , ηk) < 1/k for m > N(1/k). Next, consider η̃k = {ηk , ηk , . . .} and

ξ̃
(k)
m = {ξ(k)

m , ξ
(k)
m , . . .} in M̃S . By choice of ηk and ξ

(k)
m we have

dS(ξ̃
(k)
m , η̃k) = d(ξ

(k)
m , ηk) < 1/k.
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Theorem I.3.2

Theorem I.3.2 (continued 1)

Proof (continued). By Exercise I.3.6 (with constant sequence
η̃k = {ξk , ξk , . . .} of Exercise I.3.6 replaced with constant sequence

η̃
(k)
m = {ξ(k)

m , ξ
(k)
m , . . .} here, and sequence ξ̃ = {ξ1, ξ2, . . .} of Exercise I.3.6

replaced with sequence ξ̃(k) = {ξ(k)
1 , ξ

(k)
2 , . . .} here),

lim
m→∞

dS(ξ̃
(k)
m , ξ̃(k)) = 0.

Then by Exercise I.3.5 (with arbitrary sequence η of exercise I.3.5 replaced
with constant sequence η̃k here, and sequence {ξ1, ξ2, . . .} convergent to ξ

in Exercise I.3.5 replaced with sequence {ξ̃(k)
1 , ξ̃

(k)
2 , . . .}, which we just

argued is convergent to ξ̃(k), here),

lim
m→∞

dS(ξ̃
(k)
m , η̃k) = dS(ξ̃(k), η̃k).

Consequently,

dS(ξ̃(k), η̃k) = lim
m→∞

dS(ξ̃
(k)
m , η̃k) ≤ 1/k. (∗)
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Theorem I.3.2

Theorem I.3.2 (continued 2)

Proof (continued). Now we have chosen an ηk such that
η̃k = {ηk , ηk , . . .} satisfies (∗) for each k ∈ N. So this gives the sequence
η̃ = {η1, η2, . . .} which we now show is Cauchy and then show is the limit
of the given Cauchy sequence {ξ̃(1), ξ̃(2), . . .} ∈ M̃. We have

d(ηm, ηn) = dS(η̃mη̃n), where η̃m and η̃n are constant

sequences η̃m = {ηm, ηm, . . .} and η̃n = {ηn, ηn, . . .};
equality follows from the definition of dS on M̃S

≤ dS(η̃m, ξ̃(m)) + dS(ξ̃(m), ξ̃(n)) + dS(ξ̃(n), η̃m) by two

applications of the Triangle Inequality for dS , since dS

is a metric on M̃S and each sequence here is Cauchy;

notice that ξ̃(m), ξ̃(n) are Cauchy sequences here,

not equivalence classes

≤ 1/m + dS(ξ̃(m), ξ̃(n)) + 1/n by (∗).
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Theorem I.3.2

Theorem I.3.2 (continued 3)

Proof (continued). Since {ξ̃(1), ξ̃(2), . . .} is a Cauchy sequence of
equivalence classes by hypothesis, then by making m and n sufficiently
large, we can make d(ηm, ηn) arbitrarily small (i.e., less than ε for any
given ε > 0). So sequence η̃ = {η1, η2, . . .} is Cauchy and η̃ ∈ M̃S .
Now let η̃ also denote the equivalence class containing Cauchy sequence
{η1, η2, . . .}, so η̃ ∈ M̃. We have by the Triangle Inequality for metric dE

on M̃,
dE (η̃, ξ̃(k)) ≤ dE (η̃, η̃k) + dE (η̃k , ξ̃(k)) (∗∗)

where η̃k is the equivalence class in M̃ containing Cauchy sequence
{ηk , ηk , . . .}.

Now dS(ξ̃(k), η̃k) ≤ 1/k by (∗) and so dE (ξ̃(k), η̃)k) ≤ 1/k
(with the appropriate caution concerning equivalence classes and
sequences). By Exercise I.3.6 (with sequences ξ̃ and ξ̃k of Exercise I.3.6
replaced with sequences η̃ and η̃k , respectively, here) we have
limk→∞ dS(η̃, η̃k) = 0.
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Theorem I.3.2

Theorem I.3.2 (continued 4)

Proof (continued). Since dE (η̃, η̃k) = dS(η̃, η̃k) (again, with
sequence/equivalence class caution), then limk→∞ dE (η̃, η̃k) = 0. So, for k
sufficiently large, we see from (∗∗) that dE (η̃, ξ̃(k)) can be made arbitrarily
small. Therefore, limk→∞ ξ̃(k) = η̃ in M̃ and so arbitrary sequence
{ξ̃(1), ξ̃(2), . . .} in M̃ converges in M̃. Hence, M̃ is a compete metric
space.

Finally, we show that we can embed M in M̃. Let ξ ∈M. Map ξ ∈M
to the equivalence class ξ̃ ∈ M̃ containing the Cauchy sequence
{ξ, ξ, . . .}. This mapping is “clearly” one to one and isometric (since
d(ξ, η) = dS(ξ̃, η̃) = dE (ξ̃, η̃)). Let M′ be the image of M under this
mapping. If η̃ ∈ M̃ where equivalence class η̃ contains Cauchy sequence
{η1, η2, . . .} ∈ M̃S .
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Theorem I.3.2

Theorem I.3.2 (continued 5)

Theorem I.3.2. Every incomplete metric space M can be embedded in a
complete metric space M̃, called the completion of M.

Proof (continued). Then for given ε > 0, by Exercise I.3.6 (with
sequences ξ̃ and ξ̃k of Exercise I.3.6 replaced with sequences
η̃ = {η1, η2, . . .} and η̃k = {ηk , ηk , . . .} here), there is positive N(ε) such
that for all k > N(ε) we have dS(η̃, η̃k) < ε. Since dS(η̃, η̃k) = dE (η̃, η̃k)
(caution!), this shows that M is everywhere dense in M̃. That is, metric
space M is densely embedded in complete metric space M, as
claimed.

() Modern Algebra November 26, 2018 9 / 9


	Theorem I.3.1
	Theorem I.3.2

