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Theorem 1.3.1

Theorem 1.3.1. If a sequence &;1,&, ..., in a metric space M converges
to some £ € M then its limit is unique, and the sequence is a Cauchy
sequence.
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Theorem 1.3.1

Theorem 1.3.1. If a sequence &;1,&, ..., in a metric space M converges
to some £ € M then its limit is unique, and the sequence is a Cauchy
sequence.

Proof. If {£1,&2,...} converges to £ € M and to n € M then for any
£ > 0 there exists positive Ni(¢) and Na(e) such that d(&,&,) < €/2 for
n > Ni(e) and d(n, &) < e/2 for n > Ny(e). Consequently, for

n > max{Ni(e), N2(¢)} we have by the Triangle Inequality that

d(&,n) <d(& &) +d(Enn) <e/2+e/2=c¢.

Since € > 0 is arbitrary, then d(£,7) = 0 and so (by Definition 3.1(1) and
(2)), we have £ = 7 and so the limit of the sequence is unique.
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Theorem 1.3.1

Theorem 1.3.1. If a sequence &;1,&, ..., in a metric space M converges
to some £ € M then its limit is unique, and the sequence is a Cauchy
sequence.

Proof. If {£1,&2,...} converges to £ € M and to n € M then for any
£ > 0 there exists positive Ni(¢) and Na(e) such that d(&,&,) < €/2 for
n > Ni(e) and d(n, &) < e/2 for n > Ny(e). Consequently, for

n > max{Ni(e), N2(¢)} we have by the Triangle Inequality that

d(&,n) <d(& &) +d(Enn) <e/2+e/2=c¢.

Since € > 0 is arbitrary, then d(£,7) = 0 and so (by Definition 3.1(1) and
(2)), we have £ = 7 and so the limit of the sequence is unique.

If m,n> max{Ny(g), N2(g)} then by the Triangle Inequality
d(&m,&n) < d(Em, &) +d(§,&n) <e/2+e/2=¢

and so the convergent sequence is Cauchy. O
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Theorem 1.3.2

Theorem 1.3.2. Every incomplete metric space M can be embedded in a
complete metric space M, called the completion of M.
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Theorem 1.3.2

Theorem 1.3.2. Every incomplete metric space M can be embedded in a
complete metric space M, called the completion of M.

Proof. Let {5(1),5(2), ...} be a Cauchy sequence in M, where f(k) is the
equivalence class containing the Cauchy sequence f(k) = {fik), gk)’ ...} of
elements of M. We will construct a Cauchy sequence 7j € M which is the
limit of this given Cauchy sequence of equivalence classes

{EM,E@), .} e .
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Theorem 1.3.2

Theorem 1.3.2. Every incomplete metric space M can be embedded in a
complete metric space M, called the completion of M.

Proof. Let {5(1),5(2), ...} be a Cauchy sequence in M, where f(k) is the
equivalence class containing the Cauchy sequence f(k) = {fik), gk)’ ...} of
elements of M. We will construct a Cauchy sequence 7j € M which is the
limit of this given Cauchy sequence of equivalence classes

{f 5(2) Je M. For each k € N, choose element f,,k € M such that
(fm ) n ) < 1/k for all m > Ny for some positive N(1/k) (which can be

done smce {5 ) (k), ...} is a Cauchy sequence); denote 7, = f,(,k) so that
d(e% me) < l/k for m > N(1/k).
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Theorem 1.3.2

Theorem 1.3.2. Every incomplete metric space M can be embedded in a
complete metric space M, called the completion of M.

Proof. Let {f £ ..} be a Cauchy sequence in M, where £K) s the
equivalence cIass contaming the Cauchy sequence f(k) = {fik), gk)’ ...} of
elements of M. We will construct a Cauchy sequence 7j € M which is the
Iimit of this given Cauchy sequence of equivalence classes

{£€) (2) ..} € M. For each k € N, choose element £ € M such that
(§m , § ) < 1/k for all m > N for some positive N(1/k) (which can be
done smce {5 ) (k) ...} is a Cauchy sequence); denote 7, = f,(,k) so that
(Em ,nk) l/k for m > N(1/k). Next, consider 7jx = {nk, 1, ...} and
{fm , m),. .} in Ms. By choice of 7, and 5%() we have

(ém  Tik) = (5%(),77/() < 1/k.
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Theorem 1.3.2 (continued 1)

Proof (continued). By Exercise 1.3.6 (with constant sequence
ik = {gk,gk,. } of Exercise 1.3.6 replaced with constant sequence

~(k {§m , m . here and sequence £ = {&1,&2, ...} of Exercise 1.3.6
replaced with sequence £(¥) {51 , 2 ,. ..} here),

im_ds(€5,§0) =0

Modern Algebra November 26, 2018 5 /9



Theorem 1.3.2 (continued 1)

Proof (continued). By Exercise 1.3.6 (with constant sequence
ik = {gk,gk,. } of Exercise 1.3.6 replaced with constant sequence

~(k {§m , m . here and sequence £ = {&1,&2, ...} of Exercise 1.3.6
repIaced with sequence £(¥) {51 , 2 ,. ..} here),

im_ds(€5,§0) =0

Then by Exercise 1.3.5 (with arbitrary sequence 7 of exercise 1.3.5 replaced

with constant sequence 7j, here, and sequence {&1,&2, ...} convergent to &

in Exercise 1.3.5 replaced with sequence {fl , ék), ...}, which we just

argued is convergent to £, here),
. (k) (k) o
lim ds(ﬁr(n),ﬁk) = ds(EW), ijy).
m—0o0
Consequently,
ds(é™), ) = lim_ ds(E5),7ik) < 1/k. (+)
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Theorem 1.3.2 (continued 2)

Proof (continued). Now we have chosen an 7y such that
ik = {nk, Mk, - - .} satisfies (x) for each k € N. So this gives the sequence
i = {n1,m2, ...} which we now show is Cauchy and then show is the limit

of the given Cauchy sequence {£(1) £ 1 e M.
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Theorem 1.3.2 (continued 2)

Proof (continued). Now we have chosen an 7y such that
ik = {nk, Mk, - - .} satisfies (x) for each k € N. So this gives the sequence
i = {n1,m2, ...} which we now show is Cauchy and then show is the limit
of the given Cauchy sequence {£M) @) . 1 e M. We have

d(nf‘m 77”) =

IN

IN

ds(7imTin), where 7j,, and j, are constant

sequences fm = {Nm, Mm, - - -} and 7ip = {Nn, Ny . ..}
equality follows from the definition of ds on Mg
ds(7im, £™) + ds (£, €Y + ds(£17), fim) by two
applications of the Triangle Inequality for ds, since ds
is a metric on M and each sequence here is Cauchy;
notice that €M, £(") are Cauchy sequences here,

not equivalence classes
1/m+ds(§™, M)+ 1/n by (x).
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Theorem 1.3.2 (continued 3)

Proof (continued). Since {£1) £(2) . 1 is a Cauchy sequence of
equivalence classes by hypothesis, then by making m and n sufficiently
large, we can make d(nm,n,) arbitrarily small (i.e., less than ¢ for any
given £ > 0). So sequence 7j = {11, 7, ...} is Cauchy and 7j € Ms.
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Theorem 1.3.2 (continued 3)

Proof (continued). Since {£1) £(2) . 1 is a Cauchy sequence of
equivalence classes by hypothesis, then by making m and n sufficiently
large, we can make d(nm,n,) arbitrarily small (i.e., less than ¢ for any
given £ > 0). So sequence 7j = {11, 7, ...} is Cauchy and 7j € Ms.
Now let 7} also denote the equivalence class containing Cauchy sequence
{m,m2,...}, sofj€ M. We have by the Triangle Inequality for metric dg
on M,

dE(ﬁ? é’(k)) < dE(ﬁv 'F/k) + dE(ﬁka é(k)) (**)

where 7 is the equivalence class in M containing Cauchy sequence
{nkvnkv .. }
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Theorem 1.3.2 (continued 3)

Proof (continued). Since {£1) £(2) . 1 is a Cauchy sequence of
equivalence classes by hypothesis, then by making m and n sufficiently
large, we can make d(nm,n,) arbitrarily small (i.e., less than ¢ for any
given £ > 0). So sequence 7j = {11, 7, ...} is Cauchy and 7j € Ms.
Now let 7} also denote the equivalence class containing Cauchy sequence
{m,m2,...}, sofj€ M. We have by the Triangle Inequality for metric dg
on M,

dE(ﬁ7£(k)) < dE(ﬁv'F/k) + dE(ﬁkag(k)) (**)

where 7 is the equivalence class in M containing Cauchy sequence
{0 ks - -} Now ds(E) i) < 1/k by (%) and so de(E), i)k) < 1/k
(with the appropriate caution concerning equivalence classes and
sequences). By Exercise 1.3.6 (with sequences € and &, of Exercise 1.3.6
replaced with sequences 7 and 7ji, respectively, here) we have

limy oo dS(ﬁa ﬁk) =0.
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Theorem 1.3.2 (continued 4)

Proof (continued). Since de(7, 7ik) = ds(7, 7ik) (again, with
sequence/equivalence class caution), then limy_ o, dg(7,7jx) = 0. So, for k
sufficiently large, we see from (xx) that dE(n,f(k ) can be made arbitrarily
small. Therefore, Ilmk_,00 §( =1} in M and so arbitrary sequence

{§ ,5(2), ... }in M converges in M. Hence, M is a compete metric
space.

Modern Algebra November 26, 2018 8 /9



Theorem 1.3.2 (continued 4)

Proof (continued). Since de(7, 7ik) = ds(7, 7ik) (again, with
sequence/equivalence class caution), then limy_ o, dg(7,7jx) = 0. So, for k
sufficiently large, we see from (xx) that dE(n,f(k ) can be made arbitrarily
small. Therefore, Ilmk_,00 5( =1} in M and so arbitrary sequence

{§ ,5(2), ... }in M converges in M. Hence, M is a compete metric
space.

Finally, we show that we can embed M in M. Let £ € M. Map & € M
to the equivalence class € € M containing the Cauchy sequence
{£,€,...}. This mapping is “clearly” one to one and isometric (since
d(&,m) = ds(€,7) = de(&,7)). Let M’ be the image of M under this
mapping. If 7 ENM where equivalence class 7} contains Cauchy sequence

{m,m2,...} € Ms.
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Theorem 1.3.2 (continued 5)

Theorem 1.3.2. Every incomplete metric space M can be embedded in a
complete metric space M, called the completion of M.

Proof (continued). Then for given € > 0, by Exercise 1.3.6 (with
sequences 5 and fk of Exercise 1.3.6 replaced with sequences

i ={n,m2,...} and 7k = {nk, Nk, - . .} here), there is positive N(e) such
that for all k > N(e) we have ds(7, 7jx) < €. Since ds(7, fix) = de (7}, Tik)
(caution!), this shows that M is everywhere dense in M. That is, metric
space M is densely embedded in complete metric space M, as

claimed. O
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