Modern Algebra

Chapter |. Basic Ideas of Hilbert Space Theory
|.4. Hilbert Spaces—Proofs of Theorems
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Theorem 1.4.1

Theorem |.4.1 (continued 1)
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Proof (continued). ... by the definition of “equivalence” on &s, and then

lim ||af, — af)|| = |a| lim ||f, —f|| = 0.

n—oo n—oo

So f'+ g ~ "+ g and af’ ~ af”. So we can define vector addition and
scalar multiplication on € using representatives of equivalence classes and
the resulting definition is well-defined (i.e., independent of representatives
used). This then gives £ a vector space structure.

Next, we define the complex function on s x & of

(F8)s =limp_oo(fy | gn). But we need to confirm that the limit here
actually exists. First, we have the inequality

|<fm —fn | gm> + <fn | Em —gn>|

by Definition 1.2.1(4) and Theorem 1.2.1(b)
< {fm—1fal gm)| + [{fa | 8m — &n)l
< |fm = fallllgmll + [Ifallllgm — &nll

[(fm | gm) — (fa | &n)|

by the Schwarz-Cauchy Inequality (Thm 1.2.2).
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Theorem 1.4.1

Theorem 1.4.1. Any incomplete Euclidean space £ can be densely
embedded in a Hilbert space.

Proof. The inner product on & induces a metric on £. By Theorem 1.3.2
there is a complete metric space € in which £ can be densely embedded.
As seen in the proof of Theorem 1.3.2, the elements of & are equivalence
classes of Cauchy sequences; we denote the set of Cauchy sequences
themselves as Es. In Es define the operations

frg= {h+a1,hb+g,...} and af = {af, f,...} for sequences

f= {f,fo,..}, 8 ={g1,82,...} € Es and scalar a. It is straightforward
to confirm that this vector addition and scalar multiplication satisfy the
axioms of Definition 1.1.1 and so this gives £s a vector space structure. If
f''~ f" where f' = {f{,£],...} and " = {f' £),...} (thatis, ' and "
are in the same equivalence class in &) then

lim d(f,, £) I =171 =0,
n—oo

= lim
n—oo
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Theorem |.4.1 (continued 2)

Proof (continued). Now a Cauchy sequence is bounded (let € > 0, then
there is positive N(e) such that for all m, n > N(g) we have ||f, — fn]| < ¢
and so for a fixed m" > N(g) and for all n > N(eg) we have

ol = || < ||fn — far || < € or || fal] < ||fr|| + € and then the sequence
is bounded by max{||fl, ||, ||for—1ll; || for || + €}), so the above
inequality implies that |(fy, | gm) = (f» | gn)| can be made arbitrarily small
by making m and n sufficiently large, since ||f,, — fu|| — 0 and

lgm — gnl| — 0 as m,n — oo since {f1, f,...} and {g1,8,...} are
Cauchy. Therefore the sequence of complex numbers

{{(f | &1),{f> | &2),...} is a Cauchy sequence and since C is complete then
the sequence converges and (f | &)s = limp_oo(f | n) exists.

If f/ ~ f" are elements of s then we have from the inequality

[(fr | &n) — (fy | &n)] [(F. = £ | gn)| by Theorem 1.2.1(b)
< |fa— £ llllgnll
by the Schwarz-Cauchy Inequality (Thm 1.2.2),
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Theorem 1.4.1 (continued 3)

Proof (continued). we have lim,_. ||f, — /|| = d(f],f))) = 0 by the
definition of the equivalence relation on 5'5, and so

limp_oo [{fy, 8n) — () | gn)| = 0 (again, the fact that {g1,82,...} is
Cauchy implies ||g,|| is bounded) and so (! | g,) = (f/ | gn). So (f | &)s
can be used to define an inner product on the equivalence classes of Es;
that is, we can define (f | &) on & x € where f,§ € & are equivalence
classes and we define (f | &) = (f | &)s where on the right hand side 7
and g are Cauchy sequences (representatives) of the equivalence classes f
and g, respectively, on the left hand side. By Exercise 1.4.4, (- | -) defines
an inner product on & (that is, (- | -) satisfies the four parts of Defn 1.2.1).
Finally, the mapping of & into & defined by mapping f € £ to the
equivalent class containing Cauchy sequence {f,f,...} maps £ to, say, &’
Then & is a linear subspace of £, and by construction £’ is everywhere
dense in &, and the mapping of & — &’ is a Euclidean space isomorphism.
Since Euclidean space & is complete then it is a Hilbert space and so by
Definition 1.4.1, £ is densely embedded in Hilbert space &. m

Theorem 1.4.2

Theorem 1.4.2 (continued)
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Theorem 1.4.2. Every subspace of a separable Euclidean space is a
separable Euclidean space.

Proof (continued). Since h € & and ||h — f,|| < 1/m then gm, # 0 and
we have

Ih—&mnll = Nlh— 1o+ fo = gmnll < [[h = fall + [f0 — &mnll
< 1/m+ 1/m by the choice of g

= 1/(2m).

For ¢ > 0 given, choose m > 1/(2¢) and then we see that S is dense in &
so that &7 is separable. O
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Theorem 1.4.2

Theorem 1.4.2

Theorem 1.4.2. Every subspace of a separable Euclidean space is a
separable Euclidean space.

Proof. Let & be a (vector) subspace of Euclidean space £. Then &; itself
is a Euclidean space by Exercise 1.2.6. We now construct a countable

dense subset S = {g11, 812, 822, 813, £23, - - -} of &1.

Since £ is separable, there is a dense subset R = {fi, f»,...} of £. For

m,n € N, if there is an element of £ within a distance 1/m of f,, then
denote is as gmn (so that ||gmn — fa|| < 1/m); if no such element of &;
exists, then take gmn, = 0. Then set S = {g11, 812, 822, 813, 823, - - -} is

countable. Let h € & be given and let m € N be arbitrary. Since R is

dense in & then there is f, € R such that ||h — f,]| < 1/m.
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Theorem 1.4.3

Theorem 1.4.3. The set /?(00) of all one-column complex matrices «
ai

with countable number of elements, o = | 92 | for which

322 1 |ak|* < 0o becomes a separable Hilbert space, also denoted ¢2(c0),
if the vector operations are defined by

a b1 a1+ by a aai
o+ = an = by = ap + by ,and ac = a | 92 = aar

for any scalar a € C, and the inner product is defined by

(o] B) = 261 abx-
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Theorem 1.4.3 (continued 1)

Proof (continued). First, we establish that £?(c0) is actually a vector
space. To do so, we need to confirm that £2(cc) is closed under vector
addition and scalar multiplication (each of the seven axioms in Definition
1.1.1 then clearly hold). For a, 3 € £2(c0) as described above, we consider
for each v € N [a1,a2,...,a,]7,[b1, b2, ..., b,]T € £2(0), so that by the
Triangle Inequality on £2(v):

v 1/2 v 1/2 v 1/2
{Z|ak+bk|2} < {Z|ak|2} —|—{Z|bk|2} .
k=1 k=1 k=1

Then with v — oo, we get > 72, |ak + bk|? < oo since a, 3 € £?(c0), and
soa-l—ﬁeﬁz( ). Next, for a € C we have

S5 a2 = 352 1aPakl? = |af2 352, [akl? < oo and so aa € (2(co).
Therefore, £2(c0) is a vector space.
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Theorem 1.4.3

Theorem 1.4.3 (continued 3)

Proof (continued). So > 7 ; aj by is an absolutely convergent series and,
since C is complete, then the series is convergent (see my online Complex
Analysis 1 [MATH 5510] notes a
http://faculty.etsu.edu/gardnerr/5510/notes/III-1.pdf; see
Proposition 111.1.1); that is, (« | 3) is defined.

To complete the proof that £2(c0) is a Euclidean space, we now need to
confirm that (« | §) satisfies the four properties of Definition 1.2.1, which
is to be done in Exercise 1.4.6.

Next, we prove £?(c0) is complete. Let {a(l) o).} be a Cauchy

sequence in £2(c0) where o" = [a g ") 32 ,...]T. For any k € N we have

A = a1 = la - a2 < Z 34"

and since {a(!) a(® ...} is a Cauchy sequence then |a(™ — o
made arbitrarily small by making m and n sufficiently large.
December 26, 2018

2 = o™ - o],
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Theorem 1.4.3

Theorem 1.4.3 (continued 2)

Proof (continued). In order to show #2(c0) is a Euclidean space, we
must first show that (o | 5) = > 7 ; aj bk is actually a complex number
(that is, the series converges). As above, for a, 3 € (?(c0) we consider
[a1,a2,...,a,] ", [b1, b2, ..., by]T € £?(cc) and by the Schwarz-Cauchy
Inequality for #?(v) (Theorem 1.2.2),

v v 1/2 v 1/2
> laibe] < {ZWF} {Z|bk|2}
k=1 k=1 k=1

for all v € N. Letting v — 0o we have

Z|akbk| < {Dak?}m {iw}m < 00

since a, 3 € £?(c0).
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Theorem 1.4.3 (continued 4)

Proof (continued). Hence, this inequality implies that sequence

..} is a Cauchy sequence of complex numbers for each k € N.

Since C is complete, then {ail), af),.

B =[b1,ba,...]T. We now show 3 € £?(co
converges to (3.

1
{ag( ), ak , .
.} converges, say to by. Define
) and {oz(l)7 @ 3

With the above notation, we have by the Triangle Inequality on ¢?(o0) that

v 1/2 v 1/2
{Z|bk—a£")|2} = {Z“}k (m)+af(m) aﬁ")|2}
k=1 k=1

v 1/2 y 1/2
< {Z by — a(k"’)|2} + {Z 2™ — aﬁ(”)|2} (4.9)
k=1 k=1

for any m € N.
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Theorem 1.4.3 (continued 5)

Proof (continued). Since {a(!),a(®, ...} is a Cauchy sequence, for given
€ > 0 there is positive Ny(¢) such that for all m, n > Npy(¢) and for any
v € N we have

D18 = aP < o™ — ol <24 (x)
k=1

Since bx = limpm— o0 af(m)

positive N, (g) such that

for each k € N, then for any fixed v there is
b — a™| < £/26F /2 for all m > Ny () (%)

and for all k =1,2,...,v (choose such N(¢) for each of k =1,2,...,v
and then let N, (¢) be the maximum of these N(e) for k =1,2,...,v).

December 26, 2018

Theorem 1.4.3

Theorem 1.4.3 (continued 7)

Modern Algebra

Proof (continued). So

o 1/2
{Z |bx — ai")|2} < e forall n> No(e). (4.11)
k=1

Again from the Triangle Inequality in £2(c0),

1/2 n 1/2

|bk|2} - {Zwk —a + a(k”)|2}
k=1
v 12y 1/2
{Z|bk—a£”>|2} +{Z|a£2>|2}
k=1 k=1

v 1/2
e+ {Z |a(k“)|2} by (4.10).

k=1

Modern Algebra
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Theorem 1.4.3 (continued 6)

Proof (continued). So from (4.9) we have for all n > Np(e) that

v 1/2 v 1/2 v 1/2
{Zlbk—a‘k”)lz} < {Dbk—a&"”ﬁ} +{Z|a<k"’>—a£">|2}
k=1 k=1 k=1
v ,) /2 5
£ £
< {kz: (2(k+1)/2> } + <I> by () and (%)
=1
v q 1/2
€
= (Zz—k> 5
k=1
o 4 1/2
g
< 5(22—0 +-=c (410)

Now the right hand side of (4.10) is independent of v, we have that (4.10)
holds for all v € N where n > Ny(e).
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Theorem 1.4.3 (continued 8)

Proof (continued). Letting v — oo, this inequality implies
{32, 6e[?}"? < o0 since al™ € ¢2(c0), and so 3 € £2(c0). By (4.11),
18 — oM < e for n > Np(e) and so {aD),a(® ...} converges to 3.

36

Therefore £2(c0) is a complete Euclidean space (that is, £2(c0) is a Hilbert

space).

Now for separability. Let D be the set of all elements of £?(c0) which have

a finite number of nonzero components and each nonzero component is a
rational complex number (so the nonzero components are of the form

g1 + g2i where g1, g2 € Q). Then D is countable (as is to be shown in
Exercise 1.4.7). Let v € £?(c0) where v = [c1, o, ...] .
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Theorem 1.4.3 (continued 9) Theorem 1.4.5

Theorem 1.4.5. A Euclidean space £ is separable if and only if there is a

Proof (continued). Then > 7% [ck|? < oo and so for given ¢ > 0 there countable orthonormal basis in £.

is n € N such that Zio=n+1 ek < 5_2/2- Since Q is dense in R (and the_ Proof. First, let £ be a separable Hilbert space. Then (by the definition of
rat!onal complex numbers are dense in C), then for k =1,2,..., n there is separable; Definition 1.4.2) there is a countable set S = {fi, f,...} which
rational complex a, such th?’f |ck = ak| < e/v2n. Let is everywhere dense in £, so that S = £. By Theorem 1.2.4 there is a
a=[a,a,...,2,,0,0,...]" € D. Then countable orthonormal system T = {ej, e, ...} such that
) . 12 PRNY: span(S) = span(T). So
Iy — ol = {Z|Ck:ak|2+ Z |Ck|2} < {?"‘?} =& [T] = (T) by Theorem 1.4.4
=t = = (S) since (S) = span(S) = span(T) = (T)

Therefore countable set D is dense in £2(c0) and so £2(c0) is a separable = [S] by Theorem 1.4.4
Hilbert space, as claimed. [ — Esince S =&,

So T is an orthonormal basis for £, as claimed.
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Theorem 1.4.5 (continued 1) Theorem 1.4.5 (continued 2)
Proof (continued). Conversely, suppose T = {e;, ez,...} is a countable
orthonormal basis for £. Consider the set Proof (continued). Let h=rie; + e + -+ + raep € R. Then
R={nfi+ nh+---re, | Re(r),Im(r), Re(r2), Im(r), If=hl = [f-g+g—hl<|f—gll+lg—nhl

< ¢/24+ (a1 —n)er+ (a2 —r)ex+ -+ (an — rm)en|
...,Re(ry),Im(ry) € Q, for n € N}.

n
Then R is countable (Prugovetki mentions Exercise 1.4.7 here). Let ¢ > 0 < ¢/2+ Z |ak — rk| by the Triangle Inequality and

and f € £ be given. Since T is an orthonormal basis then by definition the f k?th ; + vect
(Definition 1.4.4) [T] = € and by Theorem 1.4.4, € ic at €1, €2, En Are unit Vectors
span(T) =(T)=[T]=£&. So f € [T] =(T) and f is a point of closure ST N
of (T). So there is g € (T) such that ||f — g|| < &/2. Now g is of the 2 = 2n
form g = aje1 + axer + - - - + ape, for some n € N, so
|f — aje; — arer — - — apen|| < €/2. Next, for k =1,2,...,n there is So countable set R is dense in £ and £ is separable, as claimed. O]
ri € C where Re(r),Im(r) € Q and |re = ax| < e/(2n).
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Lemma [.4.1

Lemma 1.4.1. For any given vector f in a Euclidean space £ (not
necessarily separable) and any countable system {ej, ep,...} in &, the
sequence {f1,f,...} of vectors, f, = > ) _;(ex | f)ex is a Cauchy
sequence, and the Fourier coefficients (ex | ) satisfy Bessel's inequality
Ifall = Sokoy e | £)12 < (I

Proof. Define h, =f —f,. Thenfori=1,2,...,n

(ei | hn) = <e,- | F = ek f>ek>
k=1

= (e | r) =) {ex| F)lei| e

k=1
= (e | f) — (e | f) since (& | ex) = ik
= 0,
and so ...
Modern Algebra December 26, 2018

Lemma 1.4.1 (continued 2)

Proof (continued). ...so ||fp]|2 = >7 [{ei | f)|> < |/f]|? and Bessel's
Inequality holds, as claimed.

Next, since ||f|| is finite and Y7, [(e; | £)|? < ||f||? for all n € N then

21 |{ei | f)|? converges. So for € > 0 there is positive N() such that
for all n > N(g) we have Y2° |(e; | £)|? (the tail of a convergent series
must be “small"). So for m,n > N(e) with m > n we have

m oo
fn—fallP= D e | AP <D e | P <e
i=n

i=n+1

and so {f1, f»,...} is a Cauchy sequence, as claimed. O
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Lemma 1.4.1 (continued 1)

Proof (continued). ...

{fo | hn) = <Z<ek | F)ex

k=1

h,,> = (e | F)*(ex | hn) =0.

k=1

Thus, (f |) = (fo+ hn | o+ hn) = (fa | fn) + (hy | hp) and since
(o | ) = 1Bl > O then 12 = {F, | £ < (F | £} = |][2. Also

3

Ifall> = (fa | fa) — <Z<ei | f)ei Z<ei | f>ej>
i=1 j=1
= SN (e e | e)e | F)

i=1 j=1
n

= Z|<e; | £)|2 since (e | &) = 0jj,...
i=1
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Theorem 1.4.6

Theorem 1.4.6. Each of the following is a necessary and sufficient
condition for a countable orthonormal system T = {e1,e;,...} to be a
basis in a separable Hilbert space H.
(a) The only vector f satisfying the relations (e, | f) = 0 for all
k € N is the zero vector, 0.
(b) For any vector f € H, limp_oo ||f — > p_1(ex | f)ex]| =0 or
f=> 1" 1(ex|f)ex. The (ex | f) are Fourier coefficients of
f with respect to basis T.
(c) Any two vectors f, g € H satisfy Parseval's relation
(f | &) =22 (f | ex)lex | 8)-
(d) Forany f e ™, |[f]l =332y [ex | £

Proof. If T is a countable orthonormal system (not necessarily a basis) in
Hilbert space H, then by Lemma 1.4.1 for any f € H the sequence

{fi, f,...} is Cauchy where f, = >} _(ex | f)ex. Since H is complete,
this sequence has a limit, say g € 'H.

December 26, 2018
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Theorem 1.4.6 Theorem 1.4.6

Theorem 1.4.6 (continued 1) Theorem 1.4.6 (continued 2)
Proof (continued). T orthonormal basis = (a) Let f € H be such that Proof (continued). (b) = T orthonormal basis Define
(ex | f) =0 for all k € N. By Definition 1.4.4 (“orthonormal basis"), n ' -
T = 1T and here 7Y which fao=">14_1(8k | f)ex. Then by (b), limp_ ||f — fp]| = 0 and so sequence
=[T]=( f) in soi eresnls a sequ?l?;:e {g1,82,...} € (T) whic {ff2,...} converges to f. So f is a limit point in / of (T). That is,
converges to f. Let gn =3 ;g akex. Then f e (T)=[T], so T is an orthonormal basis of M.
Flf) = <f nli_)rr;og,,> (a) = (b) We know sequence {fi, f,...}, where f, = >} _;(ex | f)ex,
= (f | gn) by Exercise 1.4.10 (with f, and g, of Exercise 1.4.10 converges by the observation above, and
equal to f and g, here, respectively
o) { o) = (lim (r—1)] e)
i i n—oo n—oo
= lim <f > = lim (kz_;(f | akek>> = lim (f —fy | e) by Exercise 1.4.10 (with f, and
s, gn of Exercise 1.4.10 replaced with f — £,
= nILmoo (Z ar(f | ek>> and e, here, respectively)
~ Jimoeo, — lim (e — (| &)
n—oo
so that f = 0, as claimed.
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Theorem 1.4.6 (continued 3) Theorem 1.4.6 (continued 4)
Proof (continued). (b) = (c) By (b), we have for f, g € H that

Proof (continued). ... f=limp_oo fn = limpoo (O r—_1{(ex | f)ex) and

n g =limp_oo gn = limp_oo (O 4_q(ex | &)ex). So
< n;oo,, ek>:(f|ek—llm<2e,|f > . .
I; <fn | gn> = <Z<ei | f}e,- Z(ej | g>ej>
= (f|e)— I|m ( (ei | F)" (e | ek>> ni:ln j=1
=1
= (f | ek > since e, | ek> =0 = ;;(e, | f}*(ej | g><e; | ej>
= (e - <f | ek) = L

_ £y ; - | e)di
So by (a), f —limp0o f, =0, or f — limp_c fy, as claimed in (b). Z<ek [ £)"(ex | g) since (ei | €)0;

k=1
So (a) = (b) = T orthonormal basis = (a) and the result holds for (a) 4
and (b). = ;U | ex){ex | &)-
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Theorem 1.4.6 (continued 5)

Proof (continued). By Exercise 1.4.10,

(F | &) = lim (fy | g) = lim (Z<f | ex)e | g>) =S (F e e &),

and so Parseval’s relation of (c) holds, as claimed.

(c) = (a) Suppose f is orthogonal to e;, e, .... Then by Parseval's

relation from (c),

o0

IFI2 = (F | F) = (F| exex | f) =0

k=1
and so f = 0 and (a) holds.

Since (b) = (c) = (a) = (b) < T orthonormal basis, then the result
holds for (a), (b), and (c).

Modern Algebra December 26, 2018
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Vector Spaces

Theorem 1.4.7

Theorem 1.4.7. Fundamental Theorem of Infinite Dimensional
Vector Spaces.

All complex infinite-dimensional separable Hilbert spaces are isomorphic to
72(c0), and consequently are mutually isomorphic.

Proof. Let H be a complex infinite-dimensional separable Hilbert space.
By Theorem 1.4.5, there is an orthonormal countable basis {e1, ez, ...} of
H. So by Theorem 1.4.6(b) and (d), for any f € H we have

o0 oo
f = ciex where ¢, = (e | f) and Y |kl = ||f|* < oc.
k=1 k=1
Therefore ar = [e1, e2,...]T € £2(c0). So we define a mapping

@ : H — £?(c0) where ¢(f) = ar.
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Theorem 1.4.6

Theorem 1.4.6 (continued 6)

Proof (continued). (c) = (d) By Parseval’s relation from (c), for f € H,

1112 = 221 (F | e lew | £) = Dop2q e | ) (e | ) = 22021 e | £)12,
and (d) holds, as claimed.

(d) = (a) Suppose (ex | f) = 0 for k € N. Then by (d),
112 =322 [{ex | F)]> =0 and so f = 0 and (a) holds, as claimed.

Since (c¢) = (d) = (a) = (c) & T orthonormal basis, then the result
holds for (a), (b), (c), and (d). O
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Theorem 1.4.7 (continued 1)

Proof (continued). Conversely, if 3 = [b1, by, ...]T € £?(c0) then the
sequence {f1, f,...} where f, =3}, brey is a Cauchy sequence since for
any € > 0 there is positive N(g) such that for n > N(e) we have

S22 |bk]? < & (because 3 € £2(oc)), and so for m, n > N(g) where

m > n we have

m oo
I —fall = > IkP <D Ikl <e.

k=n-+1 k=n

Since H is complete, then Cauchy sequence {fi, f,...} converges to some
(unique) f € H. Also,

(e | f) = <ek
- (s

n
Z b,-e,-> by Exercise 1.4.10. ..
i=1
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Theorem 1.4.7 (continued 1) Theorem 1.4.8

Theorem 1.4.8. Let £ be a separable Euclidean space with an
orthonormal basis {e1, e,...} and let £ be a Euclidean space. If there is
a unitary transformation from £ to £’ (that is, £ and £’ are isomorphic
inner product spaces) and if e, transforms to €], then {e], €},...} is an
orthonormal basis in £’.

n
(e | f) = lim (Z bi{ex | e;>> = bx. Proof. Let & be infinite dimensional and denote by (- | -)1 and (- | )2 the
i=1 inner products on £ and &', respectively. Since the unitary transformation
(i.e., isomorphism) preserves inner products, then

Proof (continued). ...

So the mapping ¢ : H — £2(oc) defined above has an inverse and ¢ is one ; )
: : : : (el | e)o = (e | /)1 = 0;; and so {eq, €),...} is an orthonormal system in
to one and onto. It is to be shown that mapping ¢ is an inner product il %2 i U =20 y

, ;P . . .
space isomorphism (that is, the three parts of Definition 1.2.4 are &' For each fle & there '/S a unique f 6 € such that the' unitary
satisfied) 0 transformation maps f +— f’. Now the unitary transformation also

preserves norms so

n n

lim f, — E <e,'< | f’>2€,’< = lim ||f — E <ek | f>1ek =0.
n—oo n—oo
k=1 2 k=1 1
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Theorem 1.4.8

Theorem 1.4.8. Let £ be a separable Euclidean space with an
orthonormal basis {e1, e2,...} and let £ be a Euclidean space. If there is
a unitary transformation from £ to &’ (that is, £ and £’ are isomorphic
inner product spaces) and if e, transforms to €], then {e], €},...} is an
orthonormal basis in £’.

Proof. So by Theorem 1.4.6(b), {e], €},...} is a basis of £, as claimed.

If £ is finite dimensional, the proof is similar (just drop the limits). ]
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