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Theorem 1.4.1

Theorem 1.4.1. Any incomplete Euclidean space £ can be densely
embedded in a Hilbert space.
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Theorem 1.4.1

Theorem 1.4.1. Any incomplete Euclidean space £ can be densely
embedded in a Hilbert space.

Proof. The inner product on £ induces a metric on £. By Theorem 1.3.2
there is a complete metric space & in which € can be densely embedded.
As seen in the proof of Theorem 1.3.2, the elements of £ are equivalence
classes of Cauchy sequences; we denote the set of Cauchy sequences
themselves as &s.
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Theorem 1.4.1

Theorem 1.4.1. Any incomplete Euclidean space £ can be densely
embedded in a Hilbert space.

Proof. The inner product on £ induces a metric on £. By Theorem 1.3.2
there is a complete metric space & in which € can be densely embedded.
As seen in the proof of Theorem 1.3.2, the elements of £ are equivalence
classes of Cauchy sequences; we denote the set of Cauchy sequences
themselves as &s. In Es define the operations

f+g= {h+g1,h+a,...} and af = {af1, f,...} for sequences

f= {f,f,...},& ={g1,8,...} €Es and scalar a. It is straightforward
to confirm that this vector addition and scalar multiplication satisfy the
axioms of Definition 1.1.1 and so this gives s a vector space structure.
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Theorem 1.4.1

Theorem 1.4.1. Any incomplete Euclidean space £ can be densely
embedded in a Hilbert space.

Proof. The inner product on £ induces a metric on £. By Theorem 1.3.2
there is a complete metric space & in which € can be densely embedded.
As seen in the proof of Theorem 1.3.2, the elements of £ are equivalence
classes of Cauchy sequences; we denote the set of Cauchy sequences
themselves as &s. In Es define the operations
f+g= {h+g1,h+a,...} and af = {af1, f,...} for sequences
f= {f,f,...},& ={g1,8,...} €Es and scalar a. It is straightforward
to confirm that this vector addition and scalar multiplication satisfy the
axioms of Definition 1.1.1 and so this gives s a vector space structure. If
'~ F" where f' = {f{,f],...} and " = {f{',£}',...} (that is, f’ and 7"
are in the same equivalence class in £) then
lim d(f.,f)) =
n—oo

= lim
n—oo

I =1 =0,
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Theorem 1.4.1 (continued 1)

Proof (continued). ... by the definition of “equivalence” on s, and then
lim ||af, — af)|| = |a| lim ||f, —f| = 0.
n—oo n—oo

So '+ g ~ f” + g and af’ ~ af”. So we can define vector addition and
scalar multiplication on & using representatives of equivalence classes and
the resulting definition is well-defined (i.e., independent of representatives
used). This then gives & a vector space structure.
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Theorem 1.4.1 (continued 1)

Proof (continued). ... by the definition of “equivalence” on s, and then

lim ||af, — af!|| = |a| lim ||, —f|| = 0.

So '+ g ~ f” + g and af’ ~ af”. So we can define vector addition and
scalar multiplication on & using representatives of equivalence classes and
the resulting definition is well-defined (i.e., independent of representatives
used). This then gives & a vector space structure.

Next, we define the complex function on & x & of

(f8)s =Ilimy_oo(fy | g). But we need to confirm that the limit here
actually exists. First, we have the inequality

[(fm | gm) — (fa [ &) = [(fm — fo | &m) + (fa | &m — &n)|
by Definition 1.2.1(4) and Theorem 1.2.1(b)
[(fm = fo | &m)| + [{fn | 8m — &n)]

1 = fallllgmll + lIfallllgm — &nll

by the Schwarz-Cauchy Inequality (Thm 1.2.2).
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Theorem 1.4.1 (continued 2)

Proof (continued). Now a Cauchy sequence is bounded (let ¢ > 0, then
there is positive N(g) such that for all m,n > N(g) we have ||f, — || <€
and so for a fixed m" > N(g) and for all n > N(eg) we have

ol = 1]l < ||f = frl] < € or ||fall < ||fr || + € and then the sequence
is bounded by max{||All, |2ll,-- -, |fm—1ll, || fw] + €}), so the above
inequality implies that |(f, | gm) = (fa | &n)| can be made arbitrarily small
by making m and n sufficiently large, since ||f,, — f,|| — 0 and

llgm — gnll — 0 as m, n — oo since {f1,f,...} and {g1,42,...} are
Cauchy. Therefore the sequence of complex numbers

{(fi | &g1),(f2 | &),...} is a Cauchy sequence and since C is complete then
the sequence converges and (7 | &)s = lim,_oo(f, | gn) exists.
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Theorem 1.4.1 (continued 2)

Proof (continued). Now a Cauchy sequence is bounded (let ¢ > 0, then
there is positive N(g) such that for all m,n > N(g) we have ||f, — || <€
and so for a fixed m" > N(g) and for all n > N(eg) we have

ol = 1]l < ||f = frl] < € or ||fall < ||fr || + € and then the sequence
is bounded by max{||All, |2ll,-- -, |fm—1ll, || fw] + €}), so the above
inequality implies that |(f, | gm) = (fa | &n)| can be made arbitrarily small
by making m and n sufficiently large, since ||f, — f4]| — 0 and

llgm — gnll — 0 as m, n — oo since {f1,f,...} and {g1,42,...} are
Cauchy. Therefore the sequence of complex numbers

{(fi | &g1),(f2 | &),...} is a Cauchy sequence and since C is complete then
the sequence converges and (7 | &)s = limp_oo(fy | gn) exists.

If ¥ ~ 7 are elements of &s then we have from the inequality

(fy | gn) — (f' | &a)l = |{fy — 13| gn)| by Theorem 1.2.1(b)
< |Ify = fllllgnll
by the Schwarz-Cauchy Inequality (Thm 1.2.2),
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Theorem 1.4.1 (continued 3)
Proof (continued). we have lim,_. ||f, — f;/|| = d(f;, f;') = 0 by the
definition of the equivalence relation on &g, and so

limp—oo |[{f, gn) — (f | gn)| = 0 (again, the fact that {g1,g2,...} is
Cauchy implies ||g|| is bounded) and so (f; | g,) = (f) | gn)-
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Theorem 1.4.1 (continued 3)

Proof (continued). we have lim,_. ||f, — f;/|| = d(f;, f;') = 0 by the
definition of the equivalence relation on &s, and so

limp—oo |[{f, gn) — (f | gn)| = 0 (again, the fact that {g1,g2,...} is
Cauchy implies ||g,|| is bounded) and so (f! | g,) = (f | gn). So (f | &)s
can be used to define an inner product on the equwalence classes of &s:
that is, we can define (f | &) on & x & where f,g € £ are equivalence
classes and we define (f | ) = (f | &)s where on the right hand side f
and g are Cauchy sequences (representatives) of the equivalence classes f
and g, respectively, on the left hand side. By Exercise 1.4.4, (- | -) defines
an inner product on & (that is, (- | -) satisfies the four parts of Defn 1.2.1).
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Theorem 1.4.1 (continued 3)

Proof (continued). we have lim,_. ||f, — f;/|| = d(f;, f;') = 0 by the
definition of the equivalence relation on &s, and so

limp—oo |[{f, gn) — (f | gn)| = 0 (again, the fact that {g1,g2,...} is
Cauchy implies ||g,|| is bounded) and so (f! | g,) = (f | gn). So (f | &)s
can be used to define an inner product on the equwalence classes of &s:
that is, we can define (f | &) on & x & where f,g € £ are equivalence
classes and we define (f | ) = (f | &)s where on the right hand side f
and g are Cauchy sequences (representatives) of the equivalence classes f
and g, respectively, on the left hand side. By Exercise 1.4.4, (- | -) defines
an inner product on & (that is, (- | -) satisfies the four parts of Defn 1.2.1).
Finally, the mapping of & into & defined by mapping f € £ to the
equivalent class containing Cauchy sequence {f,f,...} maps & to, say, £
Then &' is a linear subspace of &, and by construction & is everywhere
dense in &, and the mapping of £ — &’ is a Euclidean space isomorphism.
Since Euclidean space & is complete then it is a Hilbert space and so by
Definition 1.4.1, £ is densely embedded in Hilbert space &. O
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Theorem 1.4.2

Theorem 1.4.2. Every subspace of a separable Euclidean space is a
separable Euclidean space.
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Theorem 1.4.2

Theorem 1.4.2

Theorem 1.4.2. Every subspace of a separable Euclidean space is a
separable Euclidean space.

Proof. Let & be a (vector) subspace of Euclidean space £. Then & itself
is a Euclidean space by Exercise 1.2.6. We now construct a countable
dense subset S = {g11,812, 822, 813,823, - - -} of &1.
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Theorem 1.4.2

Theorem 1.4.2. Every subspace of a separable Euclidean space is a
separable Euclidean space.

Proof. Let & be a (vector) subspace of Euclidean space £. Then & itself
is a Euclidean space by Exercise 1.2.6. We now construct a countable
dense subset S = {g11,812, 822, 813,823, - - -} of &1.

Since € is separable, there is a dense subset R = {f1,f>,...} of £. For

m, n € N, if there is an element of £; within a distance 1/m of f,, then
denote is as gmn (so that ||gmn — fn|| < 1/m); if no such element of &
exists, then take gm, = 0. Then set S = {g11, 812, 822, 813,823, .- .} is

countable. Let h € & be given and let m € N be arbitrary. Since R is

dense in & then there is f, € R such that ||h — f,|| < 1/m.
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Theorem 1.4.2 (continued)

Theorem 1.4.2. Every subspace of a separable Euclidean space is a
separable Euclidean space.

Proof (continued). Since h € & and ||h — f,]| < 1/m then gm, # 0 and
we have

Hh - gmnH = [[h—fo+fH— gmnH <|h- an + an — Emnl|
< 1/m+1/m by the choice of gmn
= 1/(2m).
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Theorem 1.4.2 (continued)

Theorem 1.4.2. Every subspace of a separable Euclidean space is a
separable Euclidean space.

Proof (continued). Since h € & and ||h — f,]| < 1/m then gm, # 0 and
we have

Hh - gmnH = [[h—fo+fH— gmnH <|h- an + an — Emnl|
< 1/m+1/m by the choice of gmn
= 1/(2m).

For € > 0 given, choose m > 1/(2¢) and then we see that S is dense in &;
so that &7 is separable. O
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Theorem 1.4.3

Theorem 1.4.3. The set ¢?(co) of all one-column complex matrices a
ai
with countable number of elements, o« = | 92 | for which

S22, |ak|? < oo becomes a separable Hilbert space, also denoted ¢2(c0),
if the vector operations are defined by

a b1 a1+ b ai aa
a+f=|a@ |=| b |=|a+b | andaa=a| 2 | = | a2

for any scalar a € C, and the inner product is defined by

(| B) = 22k ajbu.
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Theorem 1.4.3 (continued 1)

Proof (continued). First, we establish that £2(c0) is actually a vector
space. To do so, we need to confirm that ¢?(c0) is closed under vector
addition and scalar multiplication (each of the seven axioms in Definition
.1.1 then clearly hold). For , 8 € £2(c0) as described above, we consider
for each v € N [a1,a2,...,a,] ", [b1, b2,...,b,]T € £?(c0), so that by the
Triangle Inequality on £2(v):

v 1/2 v 1/2 v 1/2
{Z|ak+bk12} < {Zp,ﬁ} +{Z|bk|2} .
k=1 k=1 k=1

Then with v — 0o, we get > 72 ; |ak + bk|?> < oo since o, 3 € £?(c0), and
so o+ 3 € £2(c0).
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Theorem 1.4.3 (continued 1)

Proof (continued). First, we establish that £2(c0) is actually a vector
space. To do so, we need to confirm that ¢?(c0) is closed under vector
addition and scalar multiplication (each of the seven axioms in Definition
.1.1 then clearly hold). For , 8 € £2(c0) as described above, we consider
for each v € N [a1,a2,...,a,] ", [b1, b2,...,b,]T € £?(c0), so that by the
Triangle Inequality on £2(v):

v 1/2 v 1/2 v 1/2
k=1 k=1 k=1

Then with v — 0o, we get > 72 ; |ak + bk|?> < oo since o, 3 € £?(c0), and
so a+ 3 € £?(00). Next, for a € C we have

S5 [P = 5 JaPlax? = [af? 554 [akl? < oo and s0 aa € 2(c0)
Therefore, £?(c0) is a vector space.
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Theorem 1.4.3 (continued 2)

Proof (continued). In order to show £2(c0) is a Euclidean space, we
must first show that (o | 3) = >";2, a} by is actually a complex number
(that is, the series converges). As above, for o, 3 € £?(c0) we consider

[a1,a2,...,a/] ", [b1, ba, ..., by T € ¢?(c0) and by the Schwarz-Cauchy
Inequality for £2(v) (Theorem 1.2.2),

v v 1/2 v 1/2
> lakbil < {Z\a,ﬁ} {Z\bkz}
k=1 k=1 k=1

for all v € N.
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Theorem 1.4.3 (continued 2)

Proof (continued). In order to show £2(c0) is a Euclidean space, we
must first show that (o | 3) = >";2, a} by is actually a complex number
(that is, the series converges). As above, for o, 3 € £?(c0) we consider
[a1,a2,...,a/] ", [b1, ba, ..., by T € ¢?(c0) and by the Schwarz-Cauchy
Inequality for £2(v) (Theorem 1.2.2),

Vv Vv 1/2 Vv 1/2
S Jaibi < {z\am} {zw}
k=1 k=1 k=1
for all v € N. Letting v — co we have
00 00 172 r 1/2
z|azbk|g{z\ak|2} {zw} .
k=1 k=1 k=1

since a, 3 € £2(00).
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Theorem 1.4.3 (continued 3)

Proof (continued). So > 77, a} by is an absolutely convergent series and,
since C is complete, then the series is convergent (see my online Complex

Analysis 1 [MATH 5510] notes a
http://faculty.etsu.edu/gardnerr/5510/notes/III-1.pdf; see

Proposition 111.1.1); that is, (« | ) is defined.
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Theorem 1.4.3 (continued 3)

Proof (continued). So > 77, a} by is an absolutely convergent series and,
since C is complete, then the series is convergent (see my online Complex
Analysis 1 [MATH 5510] notes a
http://faculty.etsu.edu/gardnerr/5510/notes/III-1.pdf; see
Proposition 111.1.1); that is, (« | ) is defined.

To complete the proof that #2(cc) is a Euclidean space, we now need to
confirm that (« | 3) satisfies the four properties of Definition 1.2.1, which
is to be done in Exercise 1.4.6.
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Theorem 1.4.3 (continued 3)

Proof (continued). So > 77, a} by is an absolutely convergent series and,
since C is complete, then the series is convergent (see my online Complex
Analysis 1 [MATH 5510] notes a
http://faculty.etsu.edu/gardnerr/5510/notes/III-1.pdf; see
Proposition 111.1.1); that is, (« | ) is defined.

To complete the proof that #2(cc) is a Euclidean space, we now need to
confirm that (« | 3) satisfies the four properties of Definition 1.2.1, which
is to be done in Exercise 1.4.6.

Next, we prove £2(cc) is complete. Let {aM) o).} be a Cauchy
sequence in 2(co0) where a(") = [a agn),. .]T. For any k € N we have
37 = a = V1" =A<\ | D21 - 8 = ol = a7,

and since {1, a(® ..} is a Cauchy sequence then ||a{™ — (|| can be
made arbitrarily small by making m and n sufficiently large.
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Theorem 1.4.3 (continued 4)

Proof (continued) Hence, this inequality implies that sequence
{af(l), ak ,...}is a Cauchy sequence of complex numbers for each k € N.

Smce C is complete, then {ak ,af),. .} converges, say to bi. Define
= [by, by, ...]T. We now show 3 € ?(c0) and {a(M), a®) ..}
converges to 3.
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Theorem 1.4.3 (continued 4)

Proof (continued) Hence, this inequality implies that sequence

{af(l), ak ,...}is a Cauchy sequence of complex numbers for each k € N.

Smce C is complete, then {ak ,af),. .} converges, say to bi. Define
= [by, by, ...]T. We now show 3 € ?(c0) and {a(M), a®) ..}

converges to 3.

With the above notation, we have by the Triangle Inequality on £2(cc) that

v 1/2 v 1/2
{Z|bkaf(")|2} = {Z\bkaimhrag(m)ai")ﬁ}
k=1 k=1

, 1/2 1/2
< {Z“)k_ag(m)z} {Z|a(m) (n } (4.9)
k=1

for any m € N.
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Theorem 1.4.3 (continued 5)

Proof (continued). Since {a(!),a(® ..} is a Cauchy sequence, for given
£ > 0 there is positive Ny(e) such that for all m, n > Ny(¢) and for any
v € N we have

Z|ak —ak 2< lalm — M2 < 22/4. (%)
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Theorem 1.4.3 (continued 5)

Proof (continued). Since {a(!),a(® ..} is a Cauchy sequence, for given
£ > 0 there is positive Ny(e) such that for all m, n > Ny(¢) and for any
v € N we have

Z 8™ — a2 < ol — oM )2 < 274 (%)
Since by = limp_oo af(m) for each k € N, then for any fixed v there is
positive N, (&) such that

|bx — as(m)| <e/2UFD2 forall m > N,(g)  (x%)

and for all k =1,2,...,v (choose such N(e) for each of k =1,2,...,v
and then let N, () be the maximum of these N(e) for k =1,2,...,v).
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Theorem 1.4.3 (continued 6)

Proof (continued). So from (4.9) we have for all n > Np(e) that

, 1/2 1/
el e ol e o
k=1 k=1 k=1
{ 2(k+1 72 } + (=) by () and (xx)
k=
2k> +3
k=1

o 1\
(sz> +o=c (410)

k=1

IA
N ™

|
N ™

Now the right hand side of (4.10) is independent of v, we have that (4.10)
holds for all v € N where n > Np(e).
Modern Algebra December 26, 2018 15 / 36



Theorem 1.4.3 (continued 7)

Proof (continued). So

o0 1/2
{Z|bk—a£")\2} <egforall n> No(e). (4.11)

k=1

Again from the Triangle Inequality in £2(00),

{i\bﬂ}m _ {Z“’ A7 1 P2 }1/2

k=1

v 12 1/2
2
< {Zrbk—ai”ﬁ} +{Z\a£)\2}
k=1 k=1
y 1/2
< e+{2\a(k")y2} by (4.10).
k=1
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Theorem 1.4.3 (continued 8)

Proof (continued). Letting v — oo, this inequality implies

{> % |b;(|2}1/2 < oo since o™ € (?(x0), and so 3 € £?(c0). By (4.11),
|8 — M| <& for n > Ng(e) and so {a),af?) ...} converges to £.
Therefore £2(00) is a complete Euclidean space (that is, £2(00) is a Hilbert
space).
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Theorem 1.4.3 (continued 8)

Proof (continued). Letting v — oo, this inequality implies

{> % |b;(|2}1/2 < oo since o™ € (?(x0), and so 3 € £?(c0). By (4.11),
|8 — M| <& for n > Ng(e) and so {a),af?) ...} converges to £.
Therefore £2(00) is a complete Euclidean space (that is, £2(00) is a Hilbert
space).

Now for separability. Let D be the set of all elements of £2(c0) which have
a finite number of nonzero components and each nonzero component is a
rational complex number (so the nonzero components are of the form

g1 + g2i where g1, g2 € Q). Then D is countable (as is to be shown in
Exercise 1.4.7). Let v € £2(c0) where v = [c1, ¢2,...]".
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Theorem 1.4.3 (continued 9)

Proof (continued). Then >3 |ck|? < oo and so for given € > 0 there
is n € N such that Y72 |cx|? < €2/2. Since Q is dense in R (and the
rational complex numbers are dense in C), then for k =1,2,..., n there is
rational complex ay such that |c, = ax| < /v/2n.
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Theorem 1.4.3 (continued 9)

Proof (continued). Then >3 |ck|? < oo and so for given € > 0 there
is n € N such that Y72 |cx|? < €2/2. Since Q is dense in R (and the
rational complex numbers are dense in C), then for k =1,2,..., n there is
rational complex ay such that |c, = ax| < €/v/2n. Let
a=[a1,a2,...,a,0,0,...]" € D. Then

n 00 1/2 2 &2 1/2
— — — 2 2 . — =
=l {kzlm al+ Y ck\} d5+3} -

k=n+1

Therefore countable set D is dense in £?(00) and so £2(cc) is a separable
Hilbert space, as claimed. O
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Theorem 1.4.5

Theorem 1.4.5. A Euclidean space & is separable if and only if there is a
countable orthonormal basis in £.
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Theorem 1.4.5

Theorem 1.4.5. A Euclidean space & is separable if and only if there is a
countable orthonormal basis in £.

Proof. First, let £ be a separable Hilbert space. Then (by the definition of
separable; Definition 1.4.2) there is a countable set S = {f1, f», ...} which
is everywhere dense in &, so that S = £. By Theorem 1.2.4 there is a
countable orthonormal system T = {ej, e3,...} such that

span(S) = span(T).
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Theorem 1.4.5

Theorem 1.4.5. A Euclidean space & is separable if and only if there is a
countable orthonormal basis in £.

Proof. First, let £ be a separable Hilbert space. Then (by the definition of
separable; Definition 1.4.2) there is a countable set S = {f1, f», ...} which
is everywhere dense in &, so that S = £. By Theorem 1.2.4 there is a
countable orthonormal system T = {ej, e3,...} such that

span(S) = span(T). So

[T] = (T) by Theorem 1.4.4
= @ since (S) = span(S) =span(T) = (T)
[S] by Theorem 1.4.4

= Esince S=E.
So T is an orthonormal basis for £, as claimed.
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Theorem 1.4.5 (continued 1)

Proof (continued). Conversely, suppose T = {e;, e2,...} is a countable
orthonormal basis for £. Consider the set

R={nfi+ rnf+---me,| Re(r),Im(r1),Re(r2), Im(r2),

...,Re(ry), Im(ry) € Q, for n € N}.

Then R is countable (Prugovetki mentions Exercise 1.4.7 here). Let ¢ > 0
and f € & be given.
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Theorem 1.4.5 (continued 1)

Proof (continued). Conversely, suppose T = {e;, e2,...} is a countable
orthonormal basis for £. Consider the set

R={nfi+ rnf+---me,| Re(r),Im(r1),Re(r2), Im(r2),

...,Re(ry), Im(ry) € Q, for n € N}.

Then R is countable (Prugovetki mentions Exercise 1.4.7 here). Let ¢ > 0
and f € &€ be given. Since T is an orthonormal basis then by definition
(Definition 1.4.4) [T] = £ and by Theorem 1.4.4,

span(T) = (T)=[T]=&. So f € [T] =(T) and f is a point of closure
of (T). So there is g € (T) such that ||f — g|| < e/2. Now g is of the
form g = aje; + aper + - - - + ape, for some n € N, so

|If —aier — axex — -+ — apen|| < e/2. Next, for k =1,2,...,n there is
re € C where Re(rk),Im(rx) € Q and |re = ak| < ¢/(2n).
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Theorem 1.4.5 (continued 2)

Proof (continued). Let h=re; + nex+---+ e, € R. Then

[f=hl = [[f-—g+g—hl<[f—gl+lg—hl
< ¢/24 (a1 —n)er+ (a2 — r)ex + -+ (an — r)en||

n
< g/2+4 Z |ak — rk| by the Triangle Inequality and

k=1
the fact that e1, e, ..., e, are unit vectors
n
€ €
2 Z 2n
k=1
So countable set R is dense in £ and £ is separable, as claimed. O
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Lemma 1.4.1

Lemma 1.4.1

Lemma 1.4.1. For any given vector f in a Euclidean space £ (not
necessarily separable) and any countable system {e1, e,...} in &, the
sequence {f, >, ...} of vectors, f, = >} _,(ex | f)ex is a Cauchy

sequence, and the Fourier coefficients (e | f) satisfy Bessel's inequality
Ifall = ks (e | AIZ < (IFII2.
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Lemma 1.4.1

Lemma 1.4.1

Lemma 1.4.1. For any given vector f in a Euclidean space £ (not
necessarily separable) and any countable system {e1, e,...} in &, the
sequence {f, >, ...} of vectors, f, = >} _,(ex | f)ex is a Cauchy
sequence, and the Fourier coefficients (e | f) satisfy Bessel's inequality
1fall = ey e [ AP < [IF]1%.

Proof. Define h, =f —f,. Thenfori=1,2,...,n

(ei | hn) = <e,- | F=> ek f>ek>
k=1

= (e |r)=> (e | F)lei| e

k=1
= (e | f)—(ei| f) since (e | ex) = ik
= 0,

and so ...
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Lemma 1.4.1 (continued 1)
Proof (continued). ...

(fo | hn) = <Z<ek | f)ew

k=1

k=1

Thus, (f |} = (fh+ hp | o+ hp) = (fy | fa) + (hn | hs) and since
(hn | hn) = |[ha]|> > 0 then [|f|> = (fy | o) < (F | £) = ||F[]°.
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Lemma 1.4.1

Lemma 1.4.1 (continued 1)

Proof (continued). ...

(fo | hn) = <Z<ek | f)ew

k=1

k=1

Thus, (f |) = (fa+ hn | fa+ hn) = (fa | fa) + (hn | hn) and since
(hn | hn) = [ hnl[? > O then [[fo[|? = (£ | ) < (F | £) = [|f]*. Also

ie,\f>

j=1

= > > (ei| £)ei | e){ej | f)

i=1 j=1

Z [(e; | £)|? since (e | &) = j, ...
i=1

n

anHz = (folfn)— <Z e | fle

i=1
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Lemma 1.4.1 (continued 2)

Proof (continued). ...so ||[f,]|2 =Y, [{e; | £}|? <||f]|? and Bessel's
Inequality holds, as claimed.
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Lemma 1.4.1 (continued 2)

Proof (continued). ...so ||[f,]|2 =Y, [{e; | £}|? <||f]|? and Bessel's
Inequality holds, as claimed.

Next, since ||f]|2 is finite and >_7_ |(ei | £)|> < ||f]|? for all n € N then

S, [{ei | f)|? converges. So for & > 0 there is positive N(g) such that

for all n > N(e) we have > 32 |(e; | f)|? (the tail of a convergent series
must be “small”). So for m,n > N(e) with m > n we have

[fon = foll® = Z Iellf!2<2|e:|f

i=n+1

and so {fi, f,...} is a Cauchy sequence, as claimed. O
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Theorem 1.4.6

Theorem 1.4.6. Each of the following is a necessary and sufficient
condition for a countable orthonormal system T = {ej, e2,...} to be a
basis in a separable Hilbert space H.

(a) The only vector f satisfying the relations (ex | f) = 0 for all
k € N is the zero vector, 0.

(b) For any vector f € H, limp_oo ||[f — > p_1(ex | f)ex]| =0 or
f=>7"1(ex | f)ex. The (e | f) are Fourier coefficients of
f with respect to basis T.

(c) Any two vectors f, g € H satisfy Parseval's relation
(flg) =22 (f | en){e | &)
(d) Forany f €M, |If] =332y [(ex | £)I%.
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Theorem 1.4.6

Theorem 1.4.6. Each of the following is a necessary and sufficient
condition for a countable orthonormal system T = {ej, e2,...} to be a
basis in a separable Hilbert space H.
(a) The only vector f satisfying the relations (ex | f) = 0 for all
k € N is the zero vector, 0.
(b) For any vector f € H, limp_oo ||[f — > p_1(ex | f)ex]| =0 or
f=>7"1(ex | f)ex. The (e | f) are Fourier coefficients of
f with respect to basis T.

(c) Any two vectors f, g € H satisfy Parseval's relation
(flg) =22 (f | en){e | &)
(d) Forany f €M, |If] =332y [(ex | £)I%.

Proof. If T is a countable orthonormal system (not necessarily a basis) in
Hilbert space H, then by Lemma 1.4.1 for any f € H the sequence
{fi, ...} is Cauchy where f, = >"7_(ex | f)ex. Since H is complete,
this sequence has a limit, say g € H.
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Theorem 1.4.6 (continued 1)

Proof (continued). T orthonormal basis = (a) Let f € H be such that
(ex | f) =0 for all k € N. By Definition 1.4.4 (“orthonormal basis"),

H = [T] = (T) and so there is a sequence {g1,g,...} C (T) which
converges to f. Let g = > ;" ; akex.
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Theorem 1.4.6 (continued 1)

Proof (continued). T orthonormal basis = (a) Let f € H be such that
(ex | f) =0 for all k € N. By Definition 1.4.4 (“orthonormal basis"),

= [T] = (T) and so there is a sequence {g1,&,...} C (T) which
converges to f. Let g, = > ;" ; akex. Then

F16) = (] Jim en)
= (f | gn) by Exercise 1.4.10 (with f, and g, of Exercise 1.4.10

equal to f and g, here, respectively)
Sn Sn
= lim <f Zakek> = lim (Z(f | akek>>
n—oo — n—oo —1
= I|m (Zak fek)

= |lim 0=0,

n—oo

so that f = 0, as claimed.
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Theorem 1.4.6 (continued 2)

Proof (continued). (b) = T orthonormal basis Define

fo=">r_1(8k | f)ek. Then by (b), lim,_. ||f — fa]| = 0 and so sequence
{ff,...} converges to f. So f is a limit point in H of (T). That is,
fe(T)=|[T] so T is an orthonormal basis of H.
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Theorem 1.4.6 (continued 2)

Proof (continued). (b) = T orthonormal basis Define

fo=">r_1(8k | f)ek. Then by (b), lim,_. ||f — fa]| = 0 and so sequence
{ffp,...} converges to f. So f is a limit point in H of (T). That is,
fe(T)=|[T] so T is an orthonormal basis of H.

(a) = (b) We know sequence {f1, f,...}, where f, =5} _;(ex | ek,
converges by the observation above, and

) = (im0 o)
= lim (f — f, | ex) by Exercise 1.4.10 (with f, and

n—oo

gn of Exercise 1.4.10 replaced with f — f,

<f— lim f,

n—oo

and ey, here, respectively)
= im ((Fl e — (fa] ).
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Theorem 1.4.6 (continued 3)

Proof (continued). ...

(F= Jim o] &) = (Flen— lim, <Z“ >
= <f\ek—llm (ZE,!f e/’€k>)

= (f|ex)—
= (f|ex)— <f|ek

since (& | ex) = 0jk

| £)"
)=

So by (a), f — limp—oo fp =0, or f — limp_. fn, as claimed in (b).
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Theorem 1.4.6 (continued 3)

Proof (continued). ...

<f_n“—>nclo f,, ek> = <f‘ ek)—nli_)rrgo<z<e; ‘ f>e,- ek>
i—1
= (flek)— lim ( (ei | )" (e | ek))
i—1
= (f|ek) —(ex | f)" since (e | ex) = dix
= (flex) —(fle)=0.

So by (a), f — limp—oo fp =0, or f — limp_. fn, as claimed in (b).

So (a) = (b) = T orthonormal basis = (a) and the result holds for (a)
and (b).
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Theorem 1.4.6 (continued 4)

Proof (continued). (b) = (c) By (b), we have for f, g € H that
f=limp oo fn = limpoo (O_4_;{ex | f)ex) and
g = limp_oo gn = limp—oo (351 (e | g)ex). So

<fn ’ gn> = <Z<ei | f>ei Z<ej ‘ g>el>

i—1 =
= > D (el (e lg)eile)
i—1 j—1
- Z<ek | )" (ex | g) since (ei | €))dj;
k=1
= ) (Fled(e| &)
k=1
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Theorem 1.4.6 (continued 5)

Proof (continued). By Exercise 1.4.10,

n

<f’g>_n|'jgo<fn\gn>_n[f“oo<z<f\ek ek’g> kz—:lf’ek (ex | &),

k=1

and so Parseval’s relation of (c) holds, as claimed.
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Theorem 1.4.6 (continued 5)

Proof (continued). By Exercise 1.4.10,

n

<f’g>_n|'jgo<fn\gn>_n[f“oo<z<f\ek ek’g> kz—:lf’ek (ex | &),

k=1
and so Parseval’s relation of (c) holds, as claimed.

(c) = (a) Suppose f is orthogonal to e1, ez, .... Then by Parseval's
relation from (c),

IFIP=(F 1) =) (fle)(e|f)=0
k=1

and so f = 0 and (a) holds.
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Theorem 1.4.6 (continued 5)

Proof (continued). By Exercise 1.4.10,

n

<f’g>_n|'j;o<fn\gn>_n[f“oo<z<f\ek ek’g> kz—:lf’ek (ex | &),

k=1
and so Parseval’s relation of (c) holds, as claimed.

(c) = (a) Suppose f is orthogonal to e1, ez, .... Then by Parseval's
relation from (c),

IFIP=(F 1) =) (fle)(e|f)=0
k=1

and so f = 0 and (a) holds.

Since (b) = (c) = (a) = (b) & T orthonormal basis, then the result
holds for (a), (b), and (c).
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Theorem 1.4.6 (continued 6)

Proof (continued). (c) = (d) By Parseval’s relation from (c), for f € H,

112 = 2R (F | e e | F) = 30 (e [ £ (e | £) = 352 e | )2,
and (d) holds, as claimed.
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Theorem 1.4.6 (continued 6)

Proof (continued). (c) = (d) By Parseval’s relation from (c), for f € H,

112 = 2R (F | e e | F) = 30 (e [ £ (e | £) = 352 e | )2,
and (d) holds, as claimed.

(d) = (a) Suppose (e | f) =0 for k € N. Then by (d),
1P = S (e | £)]2=0and so f = 0 and (a) holds, as claimed.
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Theorem 1.4.6 (continued 6)

Proof (continued). (c) = (d) By Parseval’s relation from (c), for f € H,

112 = 2R (F | e e | F) = 30 (e [ £ (e | £) = 352 e | )2,
and (d) holds, as claimed.

(d) = (a) Suppose (e | f) =0 for k € N. Then by (d),
1P = S (e | £)]2=0and so f = 0 and (a) holds, as claimed.

Since (c¢) = (d) = (a) = (c) & T orthonormal basis, then the result
holds for (a), (b), (c), and (d). O
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Theorem 1.4.7

Theorem 1.4.7. Fundamental Theorem of Infinite Dimensional
Vector Spaces.

All complex infinite-dimensional separable Hilbert spaces are isomorphic to
/?(c0), and consequently are mutually isomorphic.
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Theorem 1.4.7

Theorem 1.4.7. Fundamental Theorem of Infinite Dimensional
Vector Spaces.

All complex infinite-dimensional separable Hilbert spaces are isomorphic to
/?(c0), and consequently are mutually isomorphic.

Proof. Let H be a complex infinite-dimensional separable Hilbert space.
By Theorem 1.4.5, there is an orthonormal countable basis {ej, e,...} of
H. So by Theorem 1.4.6(b) and (d), for any f € H we have

f= chek where ¢, = (e | f) and Z lck|? = ||f]1? < o0.
k=1 k=1
Therefore ar = [e1, e2,...]T € £?(0). So we define a mapping

¢ 1 H — £?(00) where ¢(f) = ar.
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Theorem 1.4.7 (continued 1)

Proof (continued). Conversely, if 3 = [by, by, ...]T € £2(c0) then the
sequence {fi, o, ...} where f, = >~} _, bre is a Cauchy sequence since for
any € > 0 there is positive N(g) such that for n > N(e) we have

S22, |bk|? < e (because 3 € £?(xc)), and so for m, n > N(e) where

m > n we have

1 = fall = Z Ibk|2<2|bkl2<6

k=n+1

Since H is complete, then Cauchy sequence {fl, fa, ...} converges to some
(unique) f € H.
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Theorem 1.4.7 (continued 1)

Proof (continued). Conversely, if 3 = [by, by, ...]T € £2(c0) then the
sequence {fi, o, ...} where f, = >~} _, bre is a Cauchy sequence since for
any € > 0 there is positive N(g) such that for n > N(e) we have

S22, |bk|? < e (because 3 € £?(xc)), and so for m, n > N(e) where

m > n we have

I = fall = > [P <D bl <e
k=n+1 k=n

Since H is complete, then Cauchy sequence {fi, f,...} converges to some

(unique) f € H. Also,
(e | ) = <ek lim (Z b,~e,~> >
Z b; e,> by Exercise 1.4.10...
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Theorem 1.4.7 (continued 1)

Proof (continued). ...

(e | f) = nI;r&(Zb ek|e,>:bk.

So the mapping ¢ : H — £?(00) defined above has an inverse and ¢ is one
to one and onto. It is to be shown that mapping ¢ is an inner product
space isomorphism (that is, the three parts of Definition 1.2.4 are
satisfied). O
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Theorem 1.4.8

Theorem 1.4.8. Let £ be a separable Euclidean space with an
orthonormal basis {e;, e2,...} and let £ be a Euclidean space. If there is
a unitary transformation from & to &£ (that is, £ and &’ are isomorphic
inner product spaces) and if e, transforms to e, then {ej,€},...} is an
orthonormal basis in £’.
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Theorem 1.4.8

Theorem 1.4.8. Let £ be a separable Euclidean space with an
orthonormal basis {e;, e2,...} and let £ be a Euclidean space. If there is
a unitary transformation from & to &£ (that is, £ and &’ are isomorphic
inner product spaces) and if e, transforms to e, then {ej,€},...} is an
orthonormal basis in £’.

Proof. Let £ be infinite dimensional and denote by (- | -); and (- | -)2 the
inner products on £ and &', respectively. Since the unitary transformation
(i.e., isomorphism) preserves inner products, then

(ef | /)2 = (ei | €)1 = dj and so {e], &, ...} is an orthonormal system in
E'. For each f' € &', there is a unique f € £ such that the unitary
transformation maps f +— f’.
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Theorem 1.4.8

Theorem 1.4.8. Let £ be a separable Euclidean space with an
orthonormal basis {e;, e2,...} and let £ be a Euclidean space. If there is
a unitary transformation from & to &£ (that is, £ and &’ are isomorphic
inner product spaces) and if e, transforms to e, then {ej,€},...} is an
orthonormal basis in £’.

Proof. Let £ be infinite dimensional and denote by (- | -); and (- | -)2 the
inner products on £ and &', respectively. Since the unitary transformation
(i.e., isomorphism) preserves inner products, then

(ef | /)2 = (ei | €)1 = dj and so {e], &, ...} is an orthonormal system in
E'. For each f' € &', there is a unique f € £ such that the unitary
transformation maps f +— f’. Now the unitary transformation also
preserves norms so

n n

lim ||f' — Z(ef( | el = lim [|f — Z(ek | fliec|| =0.
n—oo — ) n—oo — )
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Theorem 1.4.8

Theorem 1.4.8

Theorem 1.4.8. Let £ be a separable Euclidean space with an
orthonormal basis {e;, e2,...} and let £ be a Euclidean space. If there is
a unitary transformation from & to &£ (that is, £ and &’ are isomorphic

inner product spaces) and if e, transforms to e, then {ej,€},...} is an
orthonormal basis in &’

Proof. So by Theorem 1.4.6(b), {ef, €},...} is a basis of &', as claimed.
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Theorem 1.4.8

Theorem 1.4.8. Let £ be a separable Euclidean space with an
orthonormal basis {e;, e2,...} and let £ be a Euclidean space. If there is
a unitary transformation from & to &£ (that is, £ and &’ are isomorphic
inner product spaces) and if e, transforms to e, then {ej,€},...} is an
orthonormal basis in £’.

Proof. So by Theorem 1.4.6(b), {ef, €},...} is a basis of &', as claimed.

If £ is finite dimensional, the proof is similar (just drop the limits). O
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