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Theorem I.4.1

Theorem I.4.1

Theorem I.4.1. Any incomplete Euclidean space E can be densely
embedded in a Hilbert space.

Proof. The inner product on E induces a metric on E . By Theorem I.3.2
there is a complete metric space Ẽ in which E can be densely embedded.
As seen in the proof of Theorem I.3.2, the elements of Ẽ are equivalence
classes of Cauchy sequences; we denote the set of Cauchy sequences
themselves as ẼS .

In ẼS define the operations
f̃ + g̃ = {f1 + g1, f2 + g2, . . .} and af = {af1, f2, . . .} for sequences
f̃ = {f1, f2, . . .}, g̃ = {g1, g2, . . .} ∈ ẼS and scalar a. It is straightforward
to confirm that this vector addition and scalar multiplication satisfy the
axioms of Definition I.1.1 and so this gives ẼS a vector space structure. If
f̃ ′ ∼ f̃ ′′, where f̃ ′ = {f ′1 , f ′2 , . . .} and f̃ ′′ = {f ′′1 , f ′′2 , . . .} (that is, f̃ ′ and f̃ ′′

are in the same equivalence class in Ẽ) then

lim
n→∞

d(f ′n, f
′′
n ) = lim

n→∞
‖f ′n − f ′′n ‖ = 0,
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Theorem I.4.1

Theorem I.4.1 (continued 1)

Proof (continued). . . . by the definition of “equivalence” on ẼS , and then

lim
n→∞

‖af ′n − af ′′n ‖ = |a| lim
n→∞

‖f ′n − f ′′n ‖ = 0.

So f̃ ′ + g̃ ∼ f̃ ′′ + g̃ and af̃ ′ ∼ af̃ ′′. So we can define vector addition and
scalar multiplication on Ẽ using representatives of equivalence classes and
the resulting definition is well-defined (i.e., independent of representatives
used). This then gives Ẽ a vector space structure.
Next, we define the complex function on ẼS × Ẽ of
〈f̃ | g̃〉S = limn→∞〈fn | gn〉. But we need to confirm that the limit here
actually exists. First, we have the inequality

|〈fm | gm〉 − 〈fn | gn〉| = |〈fm − fn | gm〉+ 〈fn | gm − gn〉|
by Definition I.2.1(4) and Theorem I.2.1(b)

≤ |〈fm − fn | gm〉|+ |〈fn | gm − gn〉|
≤ ‖fm − fn‖‖gm‖+ ‖fn‖‖gm − gn‖

by the Schwarz-Cauchy Inequality (Thm I.2.2).
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Theorem I.4.1

Theorem I.4.1 (continued 2)

Proof (continued). Now a Cauchy sequence is bounded (let ε > 0, then
there is positive N(ε) such that for all m, n > N(ε) we have ‖fn − fm‖ < ε
and so for a fixed m′ > N(ε) and for all n > N(ε) we have
‖fn‖ − ‖fm′‖ ≤ ‖fn − fm′‖ < ε or ‖fn‖ < ‖fm′‖+ ε and then the sequence
is bounded by max{‖f1‖, ‖f2‖, . . . , ‖fm′−1‖, ‖fm′‖+ ε}), so the above
inequality implies that |〈fm | gm〉 = 〈fn | gn〉| can be made arbitrarily small
by making m and n sufficiently large, since ‖fm − fn‖ → 0 and
‖gm − gn‖ → 0 as m, n →∞ since {f1, f2, . . .} and {g1, g2, . . .} are
Cauchy. Therefore the sequence of complex numbers
{〈f1 | g1〉, 〈f2 | g2〉, . . .} is a Cauchy sequence and since C is complete then
the sequence converges and 〈f̃ | g̃〉S = limn→∞〈fn | gn〉 exists.
If f̃ ′ ∼ f̃ ′′ are elements of ẼS then we have from the inequality

|〈f ′n | gn〉 − 〈f ′′n | gn〉| = |〈f ′n − f ′′n | gn〉| by Theorem I.2.1(b)

≤ ‖f ′n − f ′′n ‖‖gn‖
by the Schwarz-Cauchy Inequality (Thm I.2.2),
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Theorem I.4.1

Theorem I.4.1 (continued 3)

Proof (continued). we have limn→∞ ‖f ′n − f ′′n ‖ = d(f ′n, f
′′
n ) = 0 by the

definition of the equivalence relation on ẼS , and so
limn→∞ |〈f ′n, gn〉 − 〈f ′′n | gn〉| = 0 (again, the fact that {g1, g2, . . .} is
Cauchy implies ‖gn‖ is bounded) and so 〈f ′n | gn〉 = 〈f ′′n | gn〉. So 〈f̃ | g̃〉S
can be used to define an inner product on the equivalence classes of ẼS ;
that is, we can define 〈f̃ | g̃〉 on Ẽ × Ẽ where f̃ , g̃ ∈ Ẽ are equivalence
classes and we define 〈f̃ | g̃〉 = 〈f̃ | g̃〉S where on the right hand side f̃
and g̃ are Cauchy sequences (representatives) of the equivalence classes f̃
and g̃ , respectively, on the left hand side. By Exercise I.4.4, 〈· | ·〉 defines
an inner product on Ẽ (that is, 〈· | ·〉 satisfies the four parts of Defn I.2.1).

Finally, the mapping of E into Ẽ defined by mapping f ∈ E to the
equivalent class containing Cauchy sequence {f , f , . . .} maps E to, say, E ′.
Then E ′ is a linear subspace of Ẽ , and by construction E ′ is everywhere
dense in Ẽ , and the mapping of E → E ′ is a Euclidean space isomorphism.
Since Euclidean space Ẽ is complete then it is a Hilbert space and so by
Definition I.4.1, E is densely embedded in Hilbert space Ẽ .
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Theorem I.4.2

Theorem I.4.2

Theorem I.4.2. Every subspace of a separable Euclidean space is a
separable Euclidean space.

Proof. Let E1 be a (vector) subspace of Euclidean space E . Then E1 itself
is a Euclidean space by Exercise I.2.6. We now construct a countable
dense subset S = {g11, g12, g22, g13, g23, . . .} of E1.

Since E is separable, there is a dense subset R = {f1, f2, . . .} of E . For
m, n ∈ N, if there is an element of E1 within a distance 1/m of fn, then
denote is as gmn (so that ‖gmn − fn‖ < 1/m); if no such element of E1

exists, then take gmn = 0. Then set S = {g11, g12, g22, g13, g23, . . .} is
countable. Let h ∈ E1 be given and let m ∈ N be arbitrary. Since R is
dense in E then there is fn ∈ R such that ‖h − fn‖ < 1/m.
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Theorem I.4.2

Theorem I.4.2 (continued)

Theorem I.4.2. Every subspace of a separable Euclidean space is a
separable Euclidean space.

Proof (continued). Since h ∈ E1 and ‖h − fn‖ < 1/m then gmn 6= 0 and
we have

‖h − gmn‖ = ‖h − fn + fn − gmn‖ ≤ ‖h − fn‖+ ‖fn − gmn‖
< 1/m + 1/m by the choice of gmn

= 1/(2m).

For ε > 0 given, choose m > 1/(2ε) and then we see that S is dense in E1

so that E1 is separable.
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Theorem I.4.3

Theorem I.4.3

Theorem I.4.3. The set `2(∞) of all one-column complex matrices α

with countable number of elements, α =

 a1

a2
...

 for which

∑∞
k=1 |ak |2 < ∞ becomes a separable Hilbert space, also denoted `2(∞),

if the vector operations are defined by

α+β =

 a1

a2
...

 =

 b1

b2
...

 =

 a1 + b1

a2 + b2
...

 , and aα = a

 a1

a2
...

 =

 aa1

aa2
...


for any scalar a ∈ C, and the inner product is defined by
〈α | β〉 =

∑∞
k=1 a∗kbk .
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Theorem I.4.3

Theorem I.4.3 (continued 1)

Proof (continued). First, we establish that `2(∞) is actually a vector
space. To do so, we need to confirm that `2(∞) is closed under vector
addition and scalar multiplication (each of the seven axioms in Definition
I.1.1 then clearly hold). For α, β ∈ `2(∞) as described above, we consider
for each v ∈ N [a1, a2, . . . , av ]T , [b1, b2, . . . , bv ]T ∈ `2(∞), so that by the
Triangle Inequality on `2(v):{

v∑
k=1

|ak + bk |2
}1/2

≤

{
v∑

k=1

|ak |2
}1/2

+

{
v∑

k=1

|bk |2
}1/2

.

Then with v →∞, we get
∑∞

k=1 |ak + bk |2 < ∞ since α, β ∈ `2(∞), and
so α + β ∈ `2(∞). Next, for a ∈ C we have∑∞

k=1 |aak |2 =
∑∞

k=1 |a|2|ak |2 = |a|2
∑∞

k=1 |ak |2 < ∞ and so aα ∈ `2(∞).
Therefore, `2(∞) is a vector space.

() Modern Algebra December 26, 2018 10 / 36



Theorem I.4.3

Theorem I.4.3 (continued 1)

Proof (continued). First, we establish that `2(∞) is actually a vector
space. To do so, we need to confirm that `2(∞) is closed under vector
addition and scalar multiplication (each of the seven axioms in Definition
I.1.1 then clearly hold). For α, β ∈ `2(∞) as described above, we consider
for each v ∈ N [a1, a2, . . . , av ]T , [b1, b2, . . . , bv ]T ∈ `2(∞), so that by the
Triangle Inequality on `2(v):{

v∑
k=1

|ak + bk |2
}1/2

≤

{
v∑

k=1

|ak |2
}1/2

+

{
v∑

k=1

|bk |2
}1/2

.

Then with v →∞, we get
∑∞

k=1 |ak + bk |2 < ∞ since α, β ∈ `2(∞), and
so α + β ∈ `2(∞). Next, for a ∈ C we have∑∞

k=1 |aak |2 =
∑∞

k=1 |a|2|ak |2 = |a|2
∑∞

k=1 |ak |2 < ∞ and so aα ∈ `2(∞).
Therefore, `2(∞) is a vector space.

() Modern Algebra December 26, 2018 10 / 36



Theorem I.4.3

Theorem I.4.3 (continued 2)

Proof (continued). In order to show `2(∞) is a Euclidean space, we
must first show that 〈α | β〉 =

∑∞
k=1 a∗kbk is actually a complex number

(that is, the series converges). As above, for α, β ∈ `2(∞) we consider
[a1, a2, . . . , av ]T , [b1, b2, . . . , bn]

T ∈ `2(∞) and by the Schwarz-Cauchy
Inequality for `2(v) (Theorem I.2.2),

v∑
k=1

|a∗kbk | ≤

{
v∑

k=1

|ak |2
}1/2{ v∑

k=1

|bk |2
}1/2

for all v ∈ N. Letting v →∞ we have

∞∑
k=1

|a∗kbk | ≤

{ ∞∑
k=1

|ak |2
}1/2{ ∞∑

k=1

|bk |2
}1/2

< ∞

since α, β ∈ `2(∞).
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∞∑
k=1

|a∗kbk | ≤

{ ∞∑
k=1

|ak |2
}1/2{ ∞∑

k=1

|bk |2
}1/2

< ∞

since α, β ∈ `2(∞).

() Modern Algebra December 26, 2018 11 / 36



Theorem I.4.3

Theorem I.4.3 (continued 3)

Proof (continued). So
∑∞

k=1 a∗kbk is an absolutely convergent series and,
since C is complete, then the series is convergent (see my online Complex
Analysis 1 [MATH 5510] notes a
http://faculty.etsu.edu/gardnerr/5510/notes/III-1.pdf; see
Proposition III.1.1); that is, 〈α | β〉 is defined.
To complete the proof that `2(∞) is a Euclidean space, we now need to
confirm that 〈α | β〉 satisfies the four properties of Definition I.2.1, which
is to be done in Exercise I.4.6.

Next, we prove `2(∞) is complete. Let {α(1), α(2), . . .} be a Cauchy

sequence in `2(∞) where α(n) = [a
(n)
1 , a

(n)
2 , . . .]T . For any k ∈ N we have

|a(m)
k − a

(n)
k | =

√
|a(m)

k − a
(n)
k |2 ≤

√√√√ ∞∑
k=1

|a(m)
k − a

(n)
k |2 = ‖α(m) − α(n)‖,

and since {α(1), α(2), . . .} is a Cauchy sequence then ‖α(m) − α(n)‖ can be
made arbitrarily small by making m and n sufficiently large.
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Theorem I.4.3

Theorem I.4.3 (continued 4)

Proof (continued). Hence, this inequality implies that sequence

{a(1)
k , a

(2)
k , . . .} is a Cauchy sequence of complex numbers for each k ∈ N.

Since C is complete, then {a(1)
k , a

(2)
k , . . .} converges, say to bk . Define

β = [b1, b2, . . .]
T . We now show β ∈ `2(∞) and {α(1), α(2), . . .}

converges to β.

With the above notation, we have by the Triangle Inequality on `2(∞) that{
v∑

k=1

|bk − a
(n)
k |2

}1/2

=

{
v∑

k=1

|bk − a
(m)
k + a

(m)
k − a

(n)
k |2

}1/2

≤

{
v∑

k=1

|bk − a
(m)
k |2

}1/2

+

{
v∑

k=1

|a(m)
k − a

(n)
k |2

}1/2

(4.9)

for any m ∈ N.
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Theorem I.4.3

Theorem I.4.3 (continued 5)

Proof (continued). Since {α(1), α(2), . . .} is a Cauchy sequence, for given
ε > 0 there is positive N0(ε) such that for all m, n > N0(ε) and for any
v ∈ N we have

v∑
k=1

|a(m)
k − a

(n)
k |2 ≤ ‖α(m) − α(n)‖2 < ε2/4. (∗)

Since bk = limm→∞ a
(m)
k for each k ∈ N, then for any fixed v there is

positive Nv (ε) such that

|bk − a
(m)
k | < ε/2(k+1)/2 for all m > Nv (ε) (∗∗)

and for all k = 1, 2, . . . , v (choose such N(ε) for each of k = 1, 2, . . . , v
and then let Nv (ε) be the maximum of these N(ε) for k = 1, 2, . . . , v).
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Theorem I.4.3

Theorem I.4.3 (continued 6)

Proof (continued). So from (4.9) we have for all n > N0(ε) that{
v∑

k=1

|bk − a
(n)
k |2

}1/2

≤

{
v∑

k=1

|bk − a
(m)
k |2

}1/2

+

{
v∑

k=1

|a(m)
k − a

(n)
k |2

}1/2

≤

{
v∑

k=1

( ε

2(k+1)/2

)2
}1/2

+

(
ε2

4

)
by (∗) and (∗∗)

=
ε

2

(
v∑

k=1

1

2k

)1/2

+
ε

2

≤ ε

2

( ∞∑
k=1

1

2k

)1/2

+
ε

2
= ε (4.10)

Now the right hand side of (4.10) is independent of v , we have that (4.10)
holds for all v ∈ N where n > N0(ε).
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Theorem I.4.3

Theorem I.4.3 (continued 7)

Proof (continued). So{ ∞∑
k=1

|bk − a
(n)
k |2

}1/2

≤ ε for all n > N0(ε). (4.11)

Again from the Triangle Inequality in `2(∞),{
v∑

k=1

|bk |2
}1/2

=

{
n∑

k=1

|bk − a
(n)
k + a

(n)
k |2

}1/2

≤

{
v∑

k=1

|bk − a
(n)
k |2

}1/2

+

{
v∑

k=1

|a(2)
k |2

}1/2

≤ ε +

{
v∑

k=1

|a(n)
k |2

}1/2

by (4.10).
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Theorem I.4.3

Theorem I.4.3 (continued 8)

Proof (continued). Letting v →∞, this inequality implies{∑∞
k=1 |bk |2

}1/2
< ∞ since α(n) ∈ `2(∞), and so β ∈ `2(∞). By (4.11),

‖β − α(n)‖ ≤ ε for n > N0(ε) and so {α(1), α(2), . . .} converges to β.
Therefore `2(∞) is a complete Euclidean space (that is, `2(∞) is a Hilbert
space).

Now for separability. Let D be the set of all elements of `2(∞) which have
a finite number of nonzero components and each nonzero component is a
rational complex number (so the nonzero components are of the form
q1 + q2i where q1, q2 ∈ Q). Then D is countable (as is to be shown in
Exercise I.4.7). Let γ ∈ `2(∞) where γ = [c1, c2, . . .]

T .
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Theorem I.4.3

Theorem I.4.3 (continued 9)

Proof (continued). Then
∑∞

k=1 |ck |2 < ∞ and so for given ε > 0 there
is n ∈ N such that

∑∞
k=n+1 |ck |2 < ε2/2. Since Q is dense in R (and the

rational complex numbers are dense in C), then for k = 1, 2, . . . , n there is
rational complex ak such that |ck = ak | < ε/

√
2n. Let

α = [a1, a2, . . . , an, 0, 0, . . .]T ∈ D. Then

‖γ − α‖ =

{
n∑

k=1

|ck = ak |2 +
∞∑

k=n+1

|ck |2
}1/2

<

{
ε2

2
+

ε2

2

}1/2

= ε.

Therefore countable set D is dense in `2(∞) and so `2(∞) is a separable
Hilbert space, as claimed.
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Theorem I.4.5

Theorem I.4.5

Theorem I.4.5. A Euclidean space E is separable if and only if there is a
countable orthonormal basis in E .

Proof. First, let E be a separable Hilbert space. Then (by the definition of
separable; Definition I.4.2) there is a countable set S = {f1, f2, . . .} which
is everywhere dense in E , so that S = E . By Theorem I.2.4 there is a
countable orthonormal system T = {e1, e2, . . .} such that
span(S) = span(T ).

So

[T ] = (T ) by Theorem I.4.4

= (S) since (S) = span(S) = span(T ) = (T )

= [S ] by Theorem I.4.4

= E since S = E .

So T is an orthonormal basis for E , as claimed.
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Theorem I.4.5

Theorem I.4.5 (continued 1)

Proof (continued). Conversely, suppose T = {e1, e2, . . .} is a countable
orthonormal basis for E . Consider the set

R = {r1f1 + r2f2 + · · · rnen | Re(r1), Im(r1),Re(r2), Im(r2),

. . . , Re(rn), Im(rn) ∈ Q, for n ∈ N}.

Then R is countable (Prugovečki mentions Exercise I.4.7 here). Let ε > 0
and f ∈ E be given. Since T is an orthonormal basis then by definition
(Definition I.4.4) [T ] = E and by Theorem I.4.4,
span(T ) = (T ) = [T ] = E . So f ∈ [T ] = (T ) and f is a point of closure
of (T ). So there is g ∈ (T ) such that ‖f − g‖ < ε/2. Now g is of the
form g = a1e1 + a2e2 + · · ·+ anen for some n ∈ N, so
‖f − a1e1 − a2e2 − · · · − anen‖ < ε/2. Next, for k = 1, 2, . . . , n there is
rk ∈ C where Re(rk), Im(rk) ∈ Q and |rk = ak | < ε/(2n).
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Theorem I.4.5

Theorem I.4.5 (continued 2)

Proof (continued). Let h = r1e1 + r2e2 + · · ·+ rnen ∈ R. Then

‖f − h‖ = ‖f − g + g − h‖ ≤ ‖f − g‖+ ‖g − h‖
< ε/2 + ‖(a1 − r1)e1 + (a2 − r2)e2 + · · ·+ (an − rn)en‖

≤ ε/2 +
n∑

k=1

|ak − rk | by the Triangle Inequality and

the fact that e1, e2, . . . , en are unit vectors

=
ε

2
+

n∑
k=1

ε

2n
= ε.

So countable set R is dense in E and E is separable, as claimed.

() Modern Algebra December 26, 2018 21 / 36



Lemma I.4.1

Lemma I.4.1

Lemma I.4.1. For any given vector f in a Euclidean space E (not
necessarily separable) and any countable system {e1, e2, . . .} in E , the
sequence {f1, f2, . . .} of vectors, fn =

∑n
k=1〈ek | f 〉ek is a Cauchy

sequence, and the Fourier coefficients 〈ek | f 〉 satisfy Bessel’s inequality
‖fn‖ =

∑n
k=1 |〈ek | f 〉|2 ≤ ‖f ‖2.

Proof. Define hn = f − fn. Then for i = 1, 2, . . . , n

〈ei | hn〉 =

〈
ei | f −

n∑
k=1

〈ek | f 〉ek

〉

= 〈ei | r〉 −
n∑

k=1

〈ek | f 〉〈ei | ek〉

= 〈ei | f 〉 − 〈ei | f 〉 since 〈ei | ek〉 = δik

= 0,

and so . . .
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Lemma I.4.1

Lemma I.4.1 (continued 1)

Proof (continued). . . .

〈fn | hn〉 =

〈
n∑

k=1

〈ek | f 〉ek

∣∣∣∣∣ hn

〉
=

n∑
k=1

〈ek | f 〉∗〈ek | hn〉 = 0.

Thus, 〈f |〉 = 〈fn + hn | fn + hn〉 = 〈fn | fn〉+ 〈hn | hn〉 and since
〈hn | hn〉 = ‖hn‖2 ≥ 0 then ‖fn‖2 = 〈fn | fn〉 ≤ 〈f | f 〉 = ‖f ‖2. Also

‖fn‖2 = 〈fn | fn〉 −

〈
n∑

i=1

〈ei | f 〉ei

∣∣∣∣∣
n∑

j=1

〈ei | f 〉ej

〉

=
n∑

i=1

n∑
j=1

〈ei | f 〉∗〈ei | ej〉〈ej | f 〉

=
n∑

i=1

|〈ei | f 〉|2 since 〈ei | ej〉 = δij , . . .
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Lemma I.4.1
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Lemma I.4.1

Lemma I.4.1 (continued 2)

Proof (continued). . . . so ‖fn‖2 =
∑n

i=1 |〈ei | f 〉|2 ≤ ‖f ‖2 and Bessel’s
Inequality holds, as claimed.

Next, since ‖f ‖2 is finite and
∑n

i=1 |〈ei | f 〉|2 ≤ ‖f ‖2 for all n ∈ N then∑∞
i=1 |〈ei | f 〉|2 converges. So for ε > 0 there is positive N(ε) such that

for all n > N(ε) we have
∑∞

i=n |〈ei | f 〉|2 (the tail of a convergent series
must be “small”). So for m, n > N(ε) with m > n we have

|fm − fn‖2 =
m∑

i=n+1

|〈ei | f 〉|2 ≤
∞∑
i=n

|〈ei | f 〉|2 < ε

and so {f1, f2, . . .} is a Cauchy sequence, as claimed.
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Theorem I.4.6

Theorem I.4.6

Theorem I.4.6. Each of the following is a necessary and sufficient
condition for a countable orthonormal system T = {e1, e2, . . .} to be a
basis in a separable Hilbert space H.

(a) The only vector f satisfying the relations 〈ek | f 〉 = 0 for all
k ∈ N is the zero vector, 0.

(b) For any vector f ∈ H, limn→∞ ‖f −
∑n

k=1〈ek | f 〉ek‖ = 0 or
f =

∑∞
k=1〈ek | f 〉ek . The 〈ek | f 〉 are Fourier coefficients of

f with respect to basis T .

(c) Any two vectors f , g ∈ H satisfy Parseval’s relation
〈f | g〉 =

∑∞
l=1〈f | ek〉〈ek | g〉.

(d) For any f ∈ H, ‖f ‖ =
∑∞

k=1 |〈ek | f 〉|2.

Proof. If T is a countable orthonormal system (not necessarily a basis) in
Hilbert space H, then by Lemma I.4.1 for any f ∈ H the sequence
{f1, f2, . . .} is Cauchy where fn =

∑n
k=1〈ek | f 〉ek . Since H is complete,

this sequence has a limit, say g ∈ H.
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Theorem I.4.6

Theorem I.4.6 (continued 1)

Proof (continued). T orthonormal basis ⇒ (a) Let f ∈ H be such that
〈ek | f 〉 = 0 for all k ∈ N. By Definition I.4.4 (“orthonormal basis”),
H = [T ] = (T ) and so there is a sequence {g1, g2, . . .} ⊂ (T ) which
converges to f . Let gn =

∑sn
k=1 akek . Then

〈f | f 〉 =
〈
f
∣∣∣ lim

n→∞
gn

〉
= 〈f | gn〉 by Exercise I.4.10 (with fn and gn of Exercise I.4.10

equal to f and gn here, respectively)

= lim
n→∞

〈
f

∣∣∣∣∣
sn∑

k=1

akek

〉
= lim

n→∞

(
sn∑

k=1

〈f | akek〉

)

= lim
n→∞

(
sn∑

k=1

ak〈f | ek〉

)
= lim

n→∞
0 = 0,

so that f = 0, as claimed.
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Theorem I.4.6

Theorem I.4.6 (continued 2)

Proof (continued). (b) ⇒ T orthonormal basis Define
fn =

∑n
k=1〈gk | f 〉ek . Then by (b), limn→∞ ‖f − fn‖ = 0 and so sequence

{f,f2, . . .} converges to f . So f is a limit point in H of (T ). That is,

f ∈ (T ) = [T ], so T is an orthonormal basis of H.

(a) ⇒ (b) We know sequence {f1, f2, . . .}, where fn =
∑n

k=1〈ek | f 〉ek ,
converges by the observation above, and〈

f − lim
n→∞

fn

∣∣∣ ek

〉
=

〈
lim

n→∞
(f − fn)

∣∣∣ ek

〉
= lim

n→∞
〈f − fn | ek〉 by Exercise I.4.10 (with fn and

gn of Exercise I.4.10 replaced with f − fn

and en here, respectively)

= lim
n→∞

(〈f | ek〉 − 〈fn | ek〉) . . .
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Theorem I.4.6

Theorem I.4.6 (continued 3)

Proof (continued). . . .

〈
f − lim

n→∞
fn

∣∣∣ ek

〉
= 〈f | ek〉 − lim

n→∞

〈
n∑

i=1

〈ei | f 〉ei

∣∣∣∣∣ ek

〉

= 〈f | ek〉 − lim
n→∞

(
n∑

i=1

〈ei | f 〉∗〈ei | ek〉

)
= 〈f | ek〉 − 〈ek | f 〉∗ since 〈ei | ek〉 = δik

= 〈f | ek〉 − 〈f | ek〉 = 0.

So by (a), f − limn→∞ fn = 0, or f − limn→∞ fn, as claimed in (b).

So (a) ⇒ (b) ⇒ T orthonormal basis ⇒ (a) and the result holds for (a)
and (b).
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Theorem I.4.6

Theorem I.4.6 (continued 4)

Proof (continued). (b) ⇒ (c) By (b), we have for f , g ∈ H that
f = limn→∞ fn = limn→∞ (

∑n
k=1〈ek | f 〉ek) and

g = limn→∞ gn = limn→∞ (
∑n

k=1〈ek | g〉ek). So

〈fn | gn〉 =

〈
n∑

i=1

〈ei | f 〉ei

∣∣∣∣∣∣
n∑

j=1

〈ej | g〉ej

〉

=
n∑

i=1

n∑
j=1

〈ei | f 〉∗〈ej | g〉〈ei | ej〉

=
n∑

k=1

〈ek | f 〉∗〈ek | g〉 since 〈ei | ej〉δij

=
n∑

k=1

〈f | ek〉〈ek | g〉.
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Theorem I.4.6

Theorem I.4.6 (continued 5)

Proof (continued). By Exercise I.4.10,

〈f | g〉 = lim
n→∞

〈fn | gn〉 = lim
n→∞

(
n∑

k=1

〈f | ek〉〈ek | g〉

)
=

∞∑
k=1

〈f | ek〉〈ek | g〉,

and so Parseval’s relation of (c) holds, as claimed.

(c) ⇒ (a) Suppose f is orthogonal to e1, e2, . . .. Then by Parseval’s
relation from (c),

‖f ‖2 = 〈f | f 〉 =
∞∑

k=1

〈f | ek〉〈ek | f 〉 = 0

and so f = 0 and (a) holds.

Since (b) ⇒ (c) ⇒ (a) ⇒ (b) ⇔ T orthonormal basis, then the result
holds for (a), (b), and (c).
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Theorem I.4.6

Theorem I.4.6 (continued 6)

Proof (continued). (c) ⇒ (d) By Parseval’s relation from (c), for f ∈ H,

‖f ‖2 =
∑∞

k=1〈f | ek〉〈ek | f 〉 =
∑∞

k=1〈ek | f 〉∗〈ek | f 〉 =
∑∞

k=1 |〈ek | f 〉|2,
and (d) holds, as claimed.

(d) ⇒ (a) Suppose 〈ek | f 〉 = 0 for k ∈ N. Then by (d),

‖f ‖2 =
∑∞

k=1 |〈ek | f 〉|2 = 0 and so f = 0 and (a) holds, as claimed.

Since (c) ⇒ (d) ⇒ (a) ⇒ (c) ⇔ T orthonormal basis, then the result
holds for (a), (b), (c), and (d).
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Theorem I.4.7. Fundamental Theorem of Infinite Dimensional
Vector Spaces

Theorem I.4.7

Theorem I.4.7. Fundamental Theorem of Infinite Dimensional
Vector Spaces.
All complex infinite-dimensional separable Hilbert spaces are isomorphic to
`2(∞), and consequently are mutually isomorphic.

Proof. Let H be a complex infinite-dimensional separable Hilbert space.
By Theorem I.4.5, there is an orthonormal countable basis {e1, e2, . . .} of
H. So by Theorem I.4.6(b) and (d), for any f ∈ H we have

f =
∞∑

k=1

ckek where ck = 〈ek | f 〉 and
∞∑

k=1

|ck |2 = ‖f ‖2 < ∞.

Therefore αf = [e1, e2, . . .]
T ∈ `2(∞). So we define a mapping

ϕ : H → `2(∞) where ϕ(f ) = αf .
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Theorem I.4.7. Fundamental Theorem of Infinite Dimensional
Vector Spaces

Theorem I.4.7 (continued 1)

Proof (continued). Conversely, if β = [b1, b2, . . .]
T ∈ `2(∞) then the

sequence {f1, f2, . . .} where fn =
∑n

k=1 bkek is a Cauchy sequence since for
any ε > 0 there is positive N(ε) such that for n > N(ε) we have∑∞

k=n |bk |2 < ε (because β ∈ `2(∞)), and so for m, n > N(ε) where
m > n we have

‖fm − fn‖ =
m∑

k=n+1

|bk |2 ≤
∞∑

k=n

|bk |2 < ε.

Since H is complete, then Cauchy sequence {f1, f2, . . .} converges to some
(unique) f ∈ H. Also,

〈ek | f 〉 =

〈
ek

∣∣∣∣∣ lim
n→∞

(
n∑

i=1

biei

)〉

= lim
n→∞

〈
ek

∣∣∣∣∣
n∑

i=1

biei

〉
by Exercise I.4.10 . . .
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Theorem I.4.7. Fundamental Theorem of Infinite Dimensional
Vector Spaces

Theorem I.4.7 (continued 1)

Proof (continued). . . .

〈ek | f 〉 = lim
n→∞

(
n∑

i=1

bi 〈ek | ei 〉

)
= bk .

So the mapping ϕ : H → `2(∞) defined above has an inverse and ϕ is one
to one and onto. It is to be shown that mapping ϕ is an inner product
space isomorphism (that is, the three parts of Definition I.2.4 are
satisfied).
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Theorem I.4.8

Theorem I.4.8

Theorem I.4.8. Let E be a separable Euclidean space with an
orthonormal basis {e1, e2, . . .} and let E ′ be a Euclidean space. If there is
a unitary transformation from E to E ′ (that is, E and E ′ are isomorphic
inner product spaces) and if en transforms to e ′n, then {e ′1, e ′2, . . .} is an
orthonormal basis in E ′.

Proof. Let E be infinite dimensional and denote by 〈· | ·〉1 and 〈· | ·〉2 the
inner products on E and E ′, respectively. Since the unitary transformation
(i.e., isomorphism) preserves inner products, then
〈e ′i | e ′j 〉2 = 〈ei | ej〉1 = δij and so {e ′1, e ′2, . . .} is an orthonormal system in
E ′. For each f ′ ∈ E ′, there is a unique f ∈ E such that the unitary
transformation maps f 7→ f ′.

Now the unitary transformation also
preserves norms so

lim
n→∞

∥∥∥∥∥f ′ −
n∑

k=1

〈e ′k | f ′〉2e ′k

∥∥∥∥∥
2

= lim
n→∞

∥∥∥∥∥f −
n∑

k=1

〈ek | f 〉1ek

∥∥∥∥∥
1

= 0.
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1

= 0.
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Theorem I.4.8

Theorem I.4.8

Theorem I.4.8. Let E be a separable Euclidean space with an
orthonormal basis {e1, e2, . . .} and let E ′ be a Euclidean space. If there is
a unitary transformation from E to E ′ (that is, E and E ′ are isomorphic
inner product spaces) and if en transforms to e ′n, then {e ′1, e ′2, . . .} is an
orthonormal basis in E ′.

Proof. So by Theorem I.4.6(b), {e ′1, e ′2, . . .} is a basis of E ′, as claimed.

If E is finite dimensional, the proof is similar (just drop the limits).
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