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Theorem |.5.A

Theorem 1.5.A. Schroedinger’s equation implies that |[7(x, t)| is a
constant with respect to time t where for each fixed t,

limy— o0 ¥(x, t) = 0 and limy_ 1o (%) _o.
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Theorem |.5.A

Theorem |.5.A

Theorem 1.5.A. Schroedinger’s equation implies that |[7(x, t)| is a
constant with respect to time t where for each fixed t,

limy— o0 ¥(x, t) = 0 and limy_ 1o (M) —0.
Proof. We justify the claim by showing dt[||w(x t)[|?] = 0. We have

E[sz(x, Y = d [/Oo [ (x, t)? dx} = [/ P (x, t)P(x, t) dx}

/ (9 )¥(x, t)] dx by Leibniz's Rule
- [w()w,o+ww¢9%;”)w

e
:
= [ {5 - vew ) vix)

hi 0%(x,t) 1
+1*(x, t) < YT + EV(X)ZD(X, t))} dx...
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Theorem 1.5.A (continued 1)

Proof (continued).

ov*(x, t
by the conjugate of Schroedinger’s equation for wég;(’)
and Schroedinger’s equation for albgi, t)

h 0 82w* ,t ) a2¢ ’t
B 2rm/oo<a(§)¢(xat>=w(x,r>a(xxz>> o

A 62* ot O a* 2
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= Osince lim w(x,)= lim_ 8%’;’ o
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Theorem |.5.A

Theorem 1.5.A (continued 2)

Theorem 1.5.A. Schroedinger’s equation implies that ||¢(x, t)| is a
constant with respect to time t where for each fixed t,

limy o0 (X, t) = 0 and limy_ 10 (W) —o.

Proof (continued). So S[||lv(x,t)|[%] = 0 and |[¢)(x, t)||? is a constant
real valued continuous function of t. That is, ||¢(x, t)|| is constant with
respect to t, as claimed. O
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Theorem 1.5.1

Theorem 1.5.1. If ¢1(x) and v(x), their first derivatives di)1(x)/dx and
dipo(x)/dx, as well as V(x)11(x) and V(x)yo(x) are from C(l )(R) then

@um\ d%“)+wmwww

2m  dx2
1/12(X)>-

In each solution (x) of the time-independent Schroedinger equation (5.7)
has the property that ¥(x), di(x)/dx, V(x)y(x) € C(z)( ), then each
eigenvalue E of the time-independent Schroedinger equation is a real
number, and if 11(x) and 12(x) are two eigenfunctions of the
time-independent Schroedinger equation corresponding to two distinct
eigenvalues E; # Ep, then t1(x) and 12(x) are orthogonal.

2 42
— (g ) Veusl0
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Theorem 1.5.1 (continued 1)

Proof. We have (not writing the variable x):

a h2 d2¢2
. R Vi
[ (g +vee) o

a h2 . d2 a .
_ / zpld)zizdx—&—/ Vi, dx
—a

_, 2m
let u = —Ziz/ff and dv = d;jf dx
o) du:—zii,d;fjkdx and v:%
2 a a 2 g a
—2%;@*% _a_/_a_fmdildd%dx+/_a Vapio dx. ..
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Theorem 1.5.1 (continued 2)

Proof (continued). ...

2 diyn|? 2 R2 dit dy a
= e Vi
2m¢ dx |_, /_a 2m dx dx o +/_a Yivz dx
let u = 1/’1 and dv _%dx
%
so du = v 1dxandv:¢2

_ %2 m dyi
B < 1/’1 dx 2m dx 1/’) _,

/ o dz% dx +/ Vapiapo dx

2 a 2 g2
- - (1"‘”2 Pin)| + [ (- lh e vi) e

dx?
—a
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Theorem 1.5.1 (continued 3)

Proof (continued). Since 11,5 € C(12)(]R) then limy_ 400 ¥1(x) =

limx 200 ¥2(x) = limy 100 dwlx(x) = limy_ 400 dwzx(x) =0 and so

lim —(W” dlfw)

a—oo

=0.

—a
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Theorem 1.5.1 (continued 3)

Proof (continued). Since 11,5 € C(12)(]R) then limy_ 400 ¥1(x) =

limy oo P2(x) = |imﬁioo dAC) — fim, o "WX(X) =0 and so
. W2 dyY
lim ——— —0.
al—>oo (wl dx dx 2 s

If we know d?%)y/dx?, d21/12/dx2 IS C%Z)(}R) then we know the inner
product is defined and so the limit as a — oo of the two integrals above

exist, so that
: ? * h2 d2¢2
al|—>n;o</_aw1< 2m dx2 +V7/)2> >

a
= lim (/ <—ﬁd2¢{dx2+vwi‘> dx)
a—oco \ J_, 2m

so the inner product claim of the theorem holds.
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Theorem 1.5.1 (continued 3)

Proof (continued). Since 11,5 € C(12)(]R) then limy_ 400 ¥1(x) =

limy oo P2(x) = |imﬁioo dAC) — fim, o "WX(X) =0 and so
. W2 dyY
lim — = 0.
al—>oo (wl dx dx 2 s

If we know d?%)y/dx?, d21/12/dx2 IS C%Z)(}R) then we know the inner
product is defined and so the limit as a — oo of the two integrals above

exist, so that
: ? * h2 d2¢2
al|—>n;o</_aw1< 2m dx2 +V7/)2> >

a
= lim (/ <—ﬁd2¢{dx2+vwi‘> dx)
a—oco \ J_, 2m

so the inner product claim of the theorem holds. (BUT it does seem that
we need the added assumption d?vy/dx?, d%vn/dx? € Cé)(R) in order to
insure convergence of the above integrals.
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Theorem 1.5.1 (continued 4)

Proof (continued). If we know that 11 and 1), satisfy the
time-independent Schroedinger equation then we know

n? d*y; .
—5 s = Ei = Vi € Cipy(R) for i =1,2.)
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Theorem 1.5.1 (continued 4)

Proof (continued). If we know that 11 and 1), satisfy the
time-independent Schroedinger equation then we know

n? d*y; .
—5 s = Ei = Vi € Cipy(R) for i =1,2.)

If 11(x) and v»(x) satisfy the conditions of the theorem and if in addition
they are solutions of the time-independent Schroedinger equation with
eigenvalues E; and E, (so that the issue raised about d?v;/dx? and
d?i/dx? are not a concern) then by the first part of the theorem
concerning inner products and from the time-independent Schroedinger
equation we conclude (¢1(x) | Extp2(x)) = (E1vp1(x) | ¥2(x)).
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Theorem 1.5.1 (continued 4)

Proof (continued). If we know that 11 and 1), satisfy the
time-independent Schroedinger equation then we know

n? d*y; .
—5 s = Ei = Vi € Cipy(R) for i =1,2.)

If 11(x) and v»(x) satisfy the conditions of the theorem and if in addition
they are solutions of the time-independent Schroedinger equation with
eigenvalues E; and E, (so that the issue raised about d?v;/dx? and
d?i/dx? are not a concern) then by the first part of the theorem
concerning inner products and from the time-independent Schroedinger
equation we conclude (¢1(x) | Extp2(x)) = (E1th1(x) | ¥2(x)). If we take
P1(x) = Pa(x) = ¥(x) and E; = E; = E in this equation, then we get
E(b | ) = (4 | E) = (Evp | ¥) = E*(sb | ). So if 1) is a nontrivial
solution of the time-independent Schroedinger equation (i.e., ¥(x) # 0)
then ||[¢||> = (3 | ¥) > 0 and so E = E* in this case. That is, the
eigenvalues of the time-independent Schroedinger equation are real.
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Theorem 1.5.1 (continued 5)

Proof (continued). Finally, let 11 and 1, be solutions to the
time-independent Schroedinger equation with associated eigenvalues E;
and E;, respectively, where Ey # Ep. Then (11 | Extpo) = (Ext)1 | 1), or
(since E1 and E2 are real) E2<1b1 | w2> = E1<'¢1 | ¢2>, or

(Ex — E1)(11 | ¥2) = 0. Since E; # E; then we must have ¢ L 17, as
claimed. O
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Theorem 1.5.B

Theorem 1.5.B. Let HS) be the (topologically) closed subspace of (%)
which is spanned by (S’b (where Eb is the set of “bound states”; that is, the
set of C(lz)(R) which are solutions of the time-independent Schroedinger

equations). Then an orthonormal basis of HS) is given by T = Uges, Te
where Tg is an orthonormal basis for Mg. NOTE: You may assume that
H™) is separable (as will be shown in Chapter II).
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Theorem 1.5.B

Theorem 1.5.B. Let HS) be the (topologically) closed subspace of (%)
which is spanned by (S’b (where Eb is the set of “bound states”; that is, the
set of C(lz)(R) which are solutions of the time-independent Schroedinger

equations). Then an orthonormal basis of HS) is given by T = Uges, Te
where Tg is an orthonormal basis for Mg. NOTE: You may assume that
H™) is separable (as will be shown in Chapter II).

Proof. First, since we assume H(1) is separable, then by Theorem 1.4.2

HS) is also separable. For each E € S, Mg is a subspace of HE) and so
Mg is also separable. By Theorem 1.4.5, each Mg has an at most
countably infinite orthonormal system Tg spanning Mg.
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Theorem 1.5.B

Theorem 1.5.B. Let HS) be the (topologically) closed subspace of (%)
which is spanned by (S’b (where Eb is the set of “bound states”; that is, the
set of C(lz)(R) which are solutions of the time-independent Schroedinger

equations). Then an orthonormal basis of HS) is given by T = Uges, Te
where Tg is an orthonormal basis for Mg. NOTE: You may assume that
H™) is separable (as will be shown in Chapter II).

Proof. First, since we assume H(1) is separable, then by Theorem 1.4.2
HS) is also separable. For each E € S, Mg is a subspace of HE) and so
Mg is also separable. By Theorem 1.4.5, each Mg has an at most
countably infinite orthonormal system Tg spanning Mg. Consider

T = UEesp Te. Now every element of & is some (countable) sum of

elements of T. Since the closure of the span of & is Hél), then the closed

subspace spanned by T is HS).
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Theorem 1.5.B (continued)

Theorem 1.5.B. Let HS) be the (topologically) closed subspace of (1)

which is spanned by €b (where Eb is the set of “bound states”; that is, the
set of C(lz)(R) which are solutions of the time-independent Schroedinger

equations). Then an orthonormal basis of HY is given by T = Uges, Te
where Tg is an orthonormal basis for Mg. NOTE: You may assume that
H(1) is separable (as will be shown in Chapter I1).

Proof (continued). Since each Tg is orthonormal and by Theorem 1.5.1
every element of T, is orthonormal to every subset of Tg, for E; # Ej,
then set T is orthonormal. So T is linearly independent (see Exercise
1.4.12) and by Exercise 1.5.3, T is countable. So T is an orthonormal basis

of HS), as claimed. ]
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Theorem 1.5.2

Theorem 1.5.2. For any fixed t € R, the sequence {®1(t), Po(t),...},

n

On(t) =D ()i

k=1

where cx(t) = exp <_fi’zEk(t - to)) (Wi | Wo),

is convergent in the norm of Hl()l) to some W(t) € Hl()l). For t = to,
limp_o00 Pn(to) = V(to) satisfies the initial condition W(ty) = Wy.
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Theorem 1.5.2

Theorem 1.5.2. For any fixed t € R, the sequence {®1(t), Po(t),...},

n

On(t) =D ()i

k=1
where Ck(t) = exp <—I%Ek(t - to)) <Wk | Wo),

is convergent in the norm of Hl()l) to some W(t) € Hl()l). For t = to,

lim,—0o ®n(to) = W(ty) satisfies the initial condition W(ty) = Wy.

Proof. Since {W1, W5, ...} is an orthonormal basis in Hf)l), by Theorem
1.4.6(d),

('s) o) . 2
kzz:l |Ck(t)|2 — kzzjl exp (—%Ek(t — to)) <Wk ‘ W0>
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Theorem 1.5.2 (continued 1)

Proof (continued).

> le(®)
k=1

> (Wi | Wo)|? since |exp (‘hEk(t - to))‘ =1
k=1

because Ej is real by Theorem 1.5.1
= ||Wo|l? < co.

So for given ¢ > 0, there is N € N such that > 7 |c(t)]? < £2.
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Theorem 1.5.2 (continued 1)

Proof (continued).

Z lee (D)) = Z (W | Wo)|? since [exp (—ﬁEk(t - t0)>‘ =1
k=1 k=1

because Ej is real by Theorem 1.5.1
= ||Wo|l? < co.

So for given ¢ > 0, there is N € N such that Y72 [ck(t)]? < 2. So if
m,n > N (with m > n, say) then

m

2
= cht\uk =

k=n

|[®m(t) —

m
D la(t)P < Z\ck 2<¢?
k=n

(1)

and so {®,(t)} is a Cauchy sequence in "’ and hence, since Hf)l) is

complete, converges to some V(t) € 'Hél).
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Theorem 1.5.2 (continued 2)

Theorem 1.5.2. For any fixed t € R, the sequence {®1(t), Po(t),...},

n

On(t) =D cl(t)Vi

k=1

where ¢, (t) = exp <—%Ek(t — to)) (Vi | Vo),

is convergent in the norm of H(bl) to some W(t) € 'H(bl). For t = to,
lim,—oo ®n(to) = W(ty) satisfies the initial condition W(ty) = Wy.

Proof (continued). With t = tg, cx = (Vi | Vg) for k € N and so

\U(to) = nll—>nclo q),,(to) = n||—>n;oz Ck to Z to \Uk = Z<\Uk | W0>\U
k=1 =1 k=1
by Theorem 1.4.6, as claimed. O
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Theorem 1.5.C

Theorem 1.5.C. Suppose the series
= i
> exp <—ﬁEk(t - to)> (Wi | Wo)or(x)
k=1

converges in the HS) norm for each fixed value of t and converges
pointwise for each value of x and t to a limit function ¢(x, t), and that
0?p(x,t)/0x? and 9 (x, t)/Ot can be obtained by differentiating the
series term by term twice in x and once in t. Here, @(x) satisfies the
time-independent Schroedinger equation for E = Ej. Then ¢(x,t) is a
solution to Schroedinger’s equation

LOp(x, ) h? 0p(x, t)
IﬁT = *%7 + V(X)(,O(X, t).
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Theorem 1.5.C (continued)

Proof. By the hypotheses on differentiability, we have

do(x,t) S i dew(x)
= —h;Ekexp (—ﬁEk(t—t0)> (Wi | W) dt
Pe(x, t) S i P ex)
T = Tew(iE - w) welve S

(notice the inner product is an integral over x so (W | Wp) is a constant).
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Theorem 1.5.C (continued)

Proof. By the hypotheses on differentiability, we have

do(x,t) S i dew(x)
= ;Ek exp <_ﬁEk(t - t0)> (Wi | W) dt
Pe(x, t) S i P ex)
T = Tew(iE - w) welve S

(notice the inner product is an integral over x so (W | Wp) is a constant).
So

h? 0%p(x, t)

S CANY Ly t

TP (el 1
h i dpi(x
= —%Zexp (—ﬁEk(t— t0)> (W | Wo) sz( )
k=1

o .
I
V() o (~ Eult— o)) (Wi | Voliou()
k=1
Modern Algebra December 28, 2018 18 / 21



Theorem 1.5.C (continued)

Proof (continued).

oo ; 2 20, (x
= Zexp <_ﬁEk(t - to)) (Wi | Wo) <—2ﬁmd 5:2( ) + V(X)SDk(X)>
k=1

S e <—;ZEk(t _ to)> (Wi | Wo) Expr(x)
k=1

since @k (x) is a solution to the time-independent Schroedinger

i B2 d?pi(x
equation for E = Ej : “om 5;( ) + V(x)@k(x) = Expi(x)
_ R op(xt) L 9p(x t)
=i ot ot
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Theorem 1.5.C (continued)

Proof (continued).

oo ; 2 20, (x
= Zexp <_ﬁEk(t - to)) (Wi | Wo) <—2ﬁmd 5:2( ) + V(X)SDk(X)>
k=1

S e <—;ZEk(t _ to)> (Wi | Wo) Expr(x)
k=1

since @k (x) is a solution to the time-independent Schroedinger

_ 7?2 d?pk(x)
equation for E = Ej : o a2 + V(x)pk(x) = Expr(x)
_ R op(xt) L 9p(x t)
=i ot ot
So -
ol ) = Yoerp (e~ ) (Ve [V0hut)
is a solution to the Schroedinger equation, as claimed. O
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Theorem 1.5.D

Theorem 1.5.D
Theorem 1.5.D. The general solution of
d?y(x
d(z) Ew()—OforOSXSL

di;i(z) ﬁZ(E Vo)(x) =0 for x <0,x > L

ce™™ 4 de=** where k = v/2mE /hi for 0 < x < L
are™ " 4 bye= 'x where k" = \/2m(E — V) /h for x > L.
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Theorem 1.5.D

Theorem 1.5.D
Theorem 1.5.D. The general solution of
d?y(x
d(z) Ew()—OforOSXSL

di;i(z) ﬁZ(E Vo)(x) =0 for x <0,x > L

ce™™ 4 de=** where k = v/2mE /hi for 0 < x < L
are™ " 4 bye= 'x where k" = \/2m(E — V) /h for x > L.

Proof. Since the ODE is second order linear and in each of the three
regions 1(x) is a linear combination of two linearly independent functions,
we just need to confirm that (x) satisfies the ODE in each region.
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Theorem 1.5.D (continued)

Proof (continued). For 0 < x < L we have

d?y(x ) 12 2, —kx , 2M ik ikx
% E¢( ) = ce™ — k2de=k* 4 ﬁE(ce + de™"™)
2mE ikx 2mE —ikx 2m ikx —ikx
= —?Ce — ﬁ2 de + — ﬁ2 E + ?d = 0
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Theorem 1.5.D (continued)

Proof (continued). For 0 < x < L we have

d2;/;(2 x) E¢( ) = —k2ce™ — k2de ™ + %E(ce"kx + de~ )
= —%ceikx — 2fr;)2Ede_ikX + Zﬁz Ece™ + ?d —ik =0,
For x < 0 (and simiIarIy for x > L),
dz;i(z Xx) E¢( )= _(k1)2ale—ik’x _ (k’)2b1e_klx
zﬁ':(E Vo) (are™ + byel)
_ _2’77(’;2— Vo)ale—ik’x - 2”7(Eﬁz— Vo) —
+2m(L-;12— VO)ale—ik/x + 2’"(’—;2— VO)bleik’x -0
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