Modern Algebra

Chapter Il. Measure Theory and Hilbert Spaces of Functions
[1.1. Measurable Spaces—Proofs of Theorems

L lemmalll2]
Lemma Il.1.2. DeMorgan’s Laws

Lemma 11.1.2. DeMorgan’s Laws.
If % is a family of subsets of a set .27, and if for any given set S we
denote by S’ = 27\ S the complement of S with respect to .2, then

(UsezS) =NsezS and (NsezS) = UsezS'.

Proof. To establish the first claim, let £ € (Use#S)". Then & € Usc#S
andso { Z Sforall S e .%. Thatis, £ € §' for all S € . % and so
£ €Nse#S'. Hence (U_c;.g,-';?.s')f C NsezS'.

Conversely, if n € Nsc#S" thenn € S forall S € .Z. Thatis, n & S for
all S € .Z. Therefore ) € Usc#S and so ) € (Usc#S)’. Hence
ﬂ_ge,-';?sf C (USE,-';?S)" and so (USE,-';?S)" = ﬂ_ge,-';?sf. as claimed.
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Lemma Il.1.1

Lemma II.1.1. If .7 is a family of sets and R is any given set, then

RN (UsczS) =Usez(RNS).

Proof. If £ € RN (Use#S) then £ € R and € € Use#S. Thatis, £ € T
forsome T € .%. Thené € RNT where T € % and so £ € Usez(RNS).

Conversely, if n € Use#(RNS), thenn € RN T for some T € .#. The
ne€Randn e T where T €.%. Thenn € Rand n € T, so that
n € UsczS. Therefore n € RN (UsezS).

Hence RN (Use.#S) = Use#(RNS), as claimed. |
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Lemma 11.1.2 (continued)

Lemma 11.1.2. DeMorgan’s Laws.
If .% is a family of subsets of a set 2", and if for any given set S we
denote by S’ = 27\ S the complement of S with respect to 2", then

(UsezS) =NsezS and (NsezS) =UsezS'.

Proof (continued). We can take a short cut to prove the second claim.
Define #' = {S'| S € .#}. Then applying the first claim to family .7’ we
have (Usic5:S') = Ngic.7/S" and taking complements of both sides

((US’E,’F’S")I)! = (nS’e.?’SI); or Usre g S = (ﬂS’e,’ﬁ"S})}

(since (R') = R” = R for any set R). Replacing $’ with S (and .# with
F) gives Use7S = (Nse#S)', as claimed. ]
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|  TheoemIl11 |
Theorem 11.1.1

Theorem 11.1.1. If the class . of subsets of a set .2 is a Boolean
algebra, then
(a) the entire set 2" and the empty set @ belong to . %,
(b) the intersection RN S belongs to .#" whenever R, S € 7,
and

(c) the difference R\ S and symmetric difference
RAS = (R\ S)U(S\ R) belongs to .# whenever R, S € %"

Proof. 1. If RC 2 and R € ¢, then R' € .# and so
RUR = 2 € .#, as claimed. Then 2"/ = @ € ¥, as claimed.

2. For R,S € ¥ wehave RUS € ¥ and (RUS) =R' NS € ¢ (by
Lemma 11.1.1), as claimed.
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Theorem 11.1.2

Theorem 11.1.2. For any given nonempty family .% of subset of a set .2~
there is a unique smallest Boolean algebra .<7(.%) and a unique smallest
Boolean ¢ algebra <7, (.#) containing .#. That is, if <7 is a Boolean
algebra containing .% then &/ (.%) C </ and if </, is a Boolean algebra
containing .# then &, (.F) C ,. /(F) and o, (.F) are called,
respectively, the Boolean algebra and the Boolean o algebra generated by
the family .%.

Proof. Denote by § the family of all Boolean algebras & containing .%.
§ is not empty because it contains the power set & 4 of all subsets of 2.
Consider the family &7 (.7 ) = Ngez&. Now 7 (.F) is nonempty since

F CAd(F) fRSed(F)then R,S € G for all G € § and since each
® is an algebra then RUS e G and R' = 27\ Re€ G for all G € &.
Therefore RUS € /(F), R € &/(F), and /(F € F. If & is any
Boolean algebra containing .% then <7 € § and so &7 (%) C <7; that is,
o/ (F) is a smallest Boolean algebra containing .#, as claimed.
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Theorem 11.1.1 (continued)

Theorem Il.1.1. If the class . of subsets of a set .2 is a Boolean
algebra, then
(a) the entire set 2" and the empty set @ belong to .7,
(b) the intersection RN S belongs to % whenever R, S € .7,
and
(c) the difference R\ S and symmetric difference
RAS = (R\ S)U(S\ R) belongs to .#" whenever R, S € % .

Proof (continued). 3. For R, S € JZ we have
R\S = RNS
= (R'US") by Lemma I1.1.2
(R'uUS)
€ ¥ since % is a Boolean algebra.

Similarly, S\ R € J#. Hence RAS = (R\S)U(S\ R) € %, as

claimed. O
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Theorem 11.1.2 (continued)

Theorem 11.1.2. For any given nonempty family .% of subset of a set 2~
there is a unique smallest Boolean algebra <7 (.%) and a unique smallest
Boolean ¢ algebra <7;(.#) containing .#. That is, if </ is a Boolean
algebra containing .% then &/ (.%) C &/ and if </, is a Boolean algebra
containing .# then @/;(F) C . &/ (F) and </, (.F) are called,
respectively, the Boolean algebra and the Boolean o algebra generated by
the family ..

Proof (continued). For uniqueness, if % (.%#) and <%(.%) are two such
algebras, then @7 (.%) C @ (.%) since @/ (.7 ) is a smallest algebra and
o (F) C A (F) since o5(.F) is a smallest algebra. So

A (F) = (F) and the smallest such algebra is unique.

The proof for a smallest Boolean o algebra is similar. O
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Theorem 11.1.3 Theorem 11.1.3 (continued 1)
Theorem 11.1.3. The family 4 of all finite unions Proof (continued). Suppose R’ € Af forall R=hL UL U---U I, for
intervals I, b, .... I, € .#". Then

hUubU---Ul, where I, b, ..., Jpe " and ke N
R’ :(!1U12U"‘Ufk)!=Up= ¢ (15)

for some p e N and J1, b, ..., s €70 (since the result holds for k =1
instead), and we have

of intervals in .#" is identical to the Boolean algebra <7 (.#").

Proof. Since a Boolean algebra is closed under finite unions, then

By C o (F"). Now if we show that Zf is a Boolean algebra then we
must have o7 (#") C HA( (since /(.7 ") is the smallest Boolean algebra
containing .#") and hence %] = «/(."). If R, S € 4] then (
R=hUbU---Ul,and S= /U L U---UJy for some (
h,bh,..., N P T S ,Jp € an

(huhU---U g

hubuU---U fk)’ﬂ li+1 by Lemma 11.1.2
uP )m(J J@ ...UM by (1.5)

, o = ( )N J(”) U ((u"mzljm) N Jm) U---u ((uf;zljm) N J("))
To prove R' € %, we proceed by induction on k where
R=hUbU---Ul. Inthecase k =1 we have R = .~'1 is an interval. In by Lemma 11.1.1
Exercise I.1.A it is to be shown that /{ = (D U /@) U-.. U (V) where = (Uﬂ,:l-fm m_,f(l)) U (Ufnzljm mJ(Q)) sl (UPmZIJmﬂ J(V))

1D @) 1) e 71 and v < 2737 et .So R' € %} and Ay is closed
under complements of intervals.

by Lemma I1.1.1.

L Theorem 113 |
Theorem 11.1.3 (continued 2) Theorem 11.1.4

Theorem 11.1.4. Every open and every closed set in the Euclidean space
R" is a Borel set.

Theorem 11.1.3. The family 4 of all finite unions Proof. Assume O is an open set in R"”. For each m € N consider the open
) intervals in R”
hubuU---Ul, where i, b,...,1,€ " and k e N () Ky —1 ky +1
ko = X = (X1,%2,...,Xn) <x < ,

of intervals in .#" is identical to the Boolean algebra &/ (.#").

ko — 1 k 1 k, —1 k 1
2 < xp < 2+ L < xp < nt }

Proof (continued). Now an intersection of two elements of .#" is an m m  m m
element of ", s0 J,, N JMV), Sy N J@) ... JyNJV) € 77 and so ky —1 kg +1 ko —1 ko +1 ky—1 ky+1
R'=(hUhU---Ulk1) € % and so by Mathematical Induction By is = [ m . m ] X [ m . m ] XKoo X [ m ' m }
closed under complements. Therefore % is a Boolean algebra and the for ki, ko, ..., kn € Z. Then this countable collection of intervals covers
claim holds, as explained above. = R". Consider the collection of all such intervals lying within O:

R = (7)o 1y O where o ..y € K.

Then R(™) is countable for each m € Z.
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Theorem 11.1.4 (continued)

Theorem 11.1.4. Every open and every closed set in the Euclidean space
R" is a Borel set.

Proof (continued). Now if x € O then there is an e-neighborhood of x

contained in O (using the Euclidean metric on R” to define such a

neighborhood) and so for m sufficiently large (namely, m > 2n/c) there is
m)

an interval "‘#El._kz. «, containing x and lying in the & neighborhood. Now

let A be the union of the intervals in the R(™), A = Umez.1ertm 1. Since
each element of each R("™ is a subset of O, then A C O. Since each

x € O is in some element of some R(™ then O C A. So O = Aand O is
a countable union of intervals. Since the Borel sets are in the ¢ algebra
generated by .#", then O is a Borel set. Since any closed set C has an
open complement and a o algebra is closed under complements, then each
closed set in R" is also Borel. O
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Theorem 11.1.6 (continued)

Theorem 11.1.6. Every Boolean o algebra is a monotone class, and every
Boolean algebra which is a monotone class is a Boolean algebra.

Proof (continued). (b) If ./ is a Boolean algebra and a monotone class
and 51, 5. ... is an infinite sequence of sets from &7, then with

R, = supj_, Sk, the sequence Ry, R, ... is a monotonically increasing
sequence in A. Since & is a monotone class, then

U 1Sk = U Rk = limy.oc Ry € &7. So &/ is a Boolean algebra closed
under countable unions and hence <7 is a Boolean ¢ algebra, as

claimed. O
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Theorem 11.1.6

Theorem 11.1.6. Every Boolean & algebra is a monotone class, and every
Boolean algebra which is a monotone class is a Boolean algebra.

Proof. (a) If <7, is a Boolean o algebra and Ry, Ra, ... € o7, is
monotonically increasing then limy_.o. Ry = sup?>, Rk € &,. In the case
that 51, 5,,... is a monotonically decreasing sequence in @7, and so
limg—oc(S1\ Sk) = Ue1(51\ Sk) € o, where by Lemmas I1.1.1 and
11.1.2,

U1 (51 \ Sk) = U2y (51N i) = S1n (U1 Sk) S\ (URZ1 Sk’
= 51 \ (ﬂ',ﬁilsk) = 51 \ kh_.mx Sk‘

So S\ limk—co Sk € %, and since %7, is closed under set differences (and
S; contains S, S3,...) then S1\ (S1 \ limg—oo Sk) = limg_o0 Sk € 9. So
75 IS a monotone class, as claimed.
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Theorem I1.1.7

Theorem I1.1.7. If <7 is a Boolean algebra and Mi(.<7) is the monotone
class generated by 7, then 9i(.<7) is identical with the Boolean o algebra
y(27) generated by the family o7 of sets.

Proof. By Theorem I1.1.6, <7,(.<7) is a monotone class and by definition
M(<7) is the smallest monotone class containing 27, so M(.o/) C ().
We will show that 9M(.<7) is a Boolean ¢ algebra containing 7. Since
y(7) is the smallest ¢ algebra containing <7, then this will imply
(/) C M(</) and hence o, (/) = M(F).

For R € M(.«7), denote by M(R) the family of sets S € Mi(.e7) such that
S'RUS € M(</). So by definition, N(«7) C M(<7). If

51, 52,... € M(R) is a monotone sequence then, since M(<7) is a
monotone class, by Exercise 11.1.6 (lim,_o0 Sp)" = limp—o S, € M(),
and the sequence of sets RU S, RUS,, ... € M() is also a monotone
sequence and, again by Exercise 11.1.6,

(limp—oo Sp) U R = limp_.oo(Sp U R) € M(7). So, by the definition of
MN(R), limp—oo Sp € M(R) and so N(R) is a monotone class.
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Theorem 11.1.7 (continued 1)

Proof (continued). In addition, if R € </ then 9M(R) is not empty
because it contains .7, since <7 is a Boolean algebra. In this case, M(R) is
a monotone class containing </ ad hence M(.&7) C N(R). Therefore
M(R) = M() for R € o7. Since < is a Boolean algebra of sets then

2 =M(</). By the definition of N(.2"), for every S € N(2") = M(/)
we have S" € M(<7) so that M(<7) is closed under complements.

Furthermore, if R € &7, then for an arbitrary S € M(.e7) we have
SeN(R)=M(e), i.e., RUS € M(<7); consequently (by the definition
of N(S)), R € N(S). Therefore o7 C Y(S). As shown above, (S) is a
monotone class and, since it contains <7, we have (<) C M(S). Since
N(S) C M(«/) by definition, then N(S) = M(.«/) where S is any set in
M(7). So for any R, S € N(S) = M(«/) we have (by the definition of
N(S)) that RUS, R € N(S) = M(«/). Therefore, M(.«7) is a Boolean
algebra.
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L TheoemILl7]
Theorem 11.1.7 (continued 2)

Theorem 11.1.7. If <7 is a Boolean algebra and 9(.<7) is the monotone
class generated by o7, then (<) is identical with the Boolean o algebra
y(<7) generated by the family o7 of sets.

Proof (continued). Since M(.«7) is a Boolean algebra which is a

monotone class then, by Theorem 11.1.6, M(<) is a Boolean o algebra.
The result now follows, as explained above. ]
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