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Lemma Il.1.1

Lemma Il.1.1. If .7 is a family of sets and R is any given set, then

RN (UsezS) =Usez(RNS).
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Lemma I1.1.1

Lemma I1.1.1

Lemma Il.1.1. If .7 is a family of sets and R is any given set, then

RN (UsezS) =Usez(RNS).

Proof. If { € RN (Usc#S) then £ € R and £ € Usc#S. Thatis, £ € T
forsome T € .%. Then{ € RNT where T € .% and so £ € Usez(RNS).
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Lemma Il.1.1

Lemma Il.1.1. If .7 is a family of sets and R is any given set, then

RN (UsezS) =Usez(RNS).

Proof. If { € RN (Usc#S) then £ € R and £ € Usc#S. Thatis, £ € T
forsome T € .%. Then{ € RNT where T € .% and so £ € Usez(RNS).

Conversely, if n € Uscz(RNS), thenn € RN T for some T € .%#. The
neRandne T where T €. #. Thenn € Randn € T, so that
N € UsezS. Therefore n € RN (UsezS).
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Lemma Il.1.1

Lemma Il.1.1. If .7 is a family of sets and R is any given set, then

RN (UsezS) =Usez(RNS).

Proof. If { € RN (Usc#S) then £ € R and £ € Usc#S. Thatis, £ € T
forsome T € .%. Then{ € RNT where T € .% and so £ € Usez(RNS).

Conversely, if n € Uscz(RNS), thenn € RN T for some T € .%#. The
neRandne T where T €. #. Thenn € Randn € T, so that
N € UsezS. Therefore n € RN (UsezS).

Hence RN (Usc#S) = Usez(RNS), as claimed. O
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Lemma 11.1.2

Lemma I1.1.2. DeMorgan's Laws

Lemma 11.1.2. DeMorgan’s Laws.

If & is a family of subsets of a set 27, and if for any given set S we
denote by S’ = 27\ S the complement of S with respect to 2, then

(UsezS) =NsezS and (NsezS) = UsesS'.
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Lemma 11.1.2

Lemma I1.1.2. DeMorgan's Laws

Lemma 11.1.2. DeMorgan’s Laws.

If & is a family of subsets of a set 27, and if for any given set S we
denote by S’ = 27\ S the complement of S with respect to 2, then

(UsezS) =NsezS and (NsezS) = UsesS'.

Proof. To establish the first claim, let £ € (Usc#S)". Then £ &€ Usc#S
andso £ Z Sforall S €. Z. Thatis, £ € §' forall S € .% and so
e ﬂs.ggzsl. Hence (USeﬂ‘S), C ﬂSEﬂ‘S’.
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Lemma I1.1.2. DeMorgan's Laws

Lemma 11.1.2. DeMorgan’s Laws.
If & is a family of subsets of a set 27, and if for any given set S we
denote by S’ = 27\ S the complement of S with respect to 2, then

(UsezS) =NsezS and (NsezS) = UsesS'.

Proof. To establish the first claim, let £ € (Usc#S)". Then £ &€ Usc#S
andso £ Z Sforall S €. Z. Thatis, £ € §' forall S € .% and so
e ﬂs.ggzsl. Hence (USeﬂ‘S), C ﬂSEﬂ‘S’.

Conversely, if n € Nsc#S' then n € S for all S € .#. Thatis, n ¢ S for
all S € .%. Therefore n & Usc2S and so 1 € (USGyS) . Hence
NsezS C (UsezS) and so (UsezS) = NsczS', as claimed.
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Lemma 11.1.2

Lemma 11.1.2 (continued)

Lemma 11.1.2. DeMorgan’s Laws.
If & is a family of subsets of a set 27, and if for any given set S we
denote by S’ = 27\ S the complement of S with respect to 2, then

(UserS) =NsezS and (NsezS) = UsezS'.

Proof (continued). We can take a short cut to prove the second claim.
Define #' = {S' | S € #}. Then applying the first claim to family %’ we
have (Usie#/S")' = Nsre#'S’ and taking complements of both sides

/!
((Us'eﬁfsl)/) = (Nse#S') or Uses S' = (NsresS')’

(since (R') = R" = R for any set R). Replacing S’ with S (and .# with
F) gives UsczS = (NsezS)', as claimed. O
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Theorem 11.1.1

Theorem I1.1.1. If the class ¥ of subsets of a set .Z" is a Boolean
algebra, then

(a) the entire set 2" and the empty set & belong to ¢/,

(b) the intersection RN'S belongs to .# whenever R, S € ¢,
and

(c) the difference R\ S and symmetric difference
RAS = (R\ S)U(S\ R) belongs to .# whenever R, S € ¢
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Theorem 11.1.1

Theorem I1.1.1. If the class ¥ of subsets of a set .Z" is a Boolean
algebra, then

(a) the entire set 2" and the empty set & belong to ¢/,

(b) the intersection RN'S belongs to .# whenever R, S € ¢,
and

(c) the difference R\ S and symmetric difference
RAS = (R\ S)U(S\ R) belongs to .# whenever R, S € ¢

Proof. 1. If RC 2 and R € ¢, then R’ € ¥ and so
RUR =% € %, as claimed. Then &/ = @ € .#, as claimed.
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Theorem 11.1.1

Theorem I1.1.1. If the class ¥ of subsets of a set .Z" is a Boolean
algebra, then

(a) the entire set 2" and the empty set & belong to ¢/,

(b) the intersection RN'S belongs to .# whenever R, S € ¢,
and

(c) the difference R\ S and symmetric difference
RAS = (R\ S)U(S\ R) belongs to .# whenever R, S € ¢

Proof. 1. If RC 2 and R € ¢, then R’ € ¥ and so
RUR =% € %, as claimed. Then &/ = @ € .#, as claimed.

2. For R,S € % we have RUS € # and (RUS) =R' NS € % (by
Lemma 11.1.1), as claimed.
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Theorem I1.1.1 (continued)

Theorem 11.1.1. If the class %~ of subsets of a set 2" is a Boolean
algebra, then
(a) the entire set 2" and the empty set & belong to .7,
(b) the intersection RN'S belongs to .# whenever R, S € %,
and
(c) the difference R\ S and symmetric difference
RAS = (R\S)U(S\ R) belongs to .# whenever R, S € % .

Proof (continued). 3. For R, S € J# we have
R\S = RNY
= (R'US”) by Lemma I1.1.2
= (R'uSYy
€ X since £ is a Boolean algebra.
Similarly, S\ R € . Hence RAS =(R\S)U(S\R) € X, as

claimed. ]
Modern Algebra April 10,2019 7 /19



Theorem 11.1.2

Theorem 11.1.2. For any given nonempty family .# of subset of a set 2~
there is a unique smallest Boolean algebra 27(.%) and a unique smallest
Boolean o algebra o7, (.#) containing .#. That is, if &7 is a Boolean
algebra containing .% then &/ (%) C &/ and if <, is a Boolean algebra
containing .# then @/,(F) C 4,. </ (F) and o/,(.F) are called,
respectively, the Boolean algebra and the Boolean o algebra generated by
the family .%.
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Theorem 11.1.2

Theorem 11.1.2. For any given nonempty family .# of subset of a set 2~
there is a unique smallest Boolean algebra 27(.%) and a unique smallest
Boolean o algebra o7, (.#) containing .#. That is, if &7 is a Boolean
algebra containing .% then &/ (%) C &/ and if <, is a Boolean algebra
containing .# then @/,(F) C 4,. </ (F) and o/,(.F) are called,
respectively, the Boolean algebra and the Boolean o algebra generated by
the family .%.

Proof. Denote by § the family of all Boolean algebras .2/ containing ..
§ is not empty because it contains the power set G 4 of all subsets of 2 .
Consider the family &7 (%) = NeezS. Now o7 (F) is nonempty since

F C A(F).
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Theorem 11.1.2

Theorem 11.1.2. For any given nonempty family .# of subset of a set 2~
there is a unique smallest Boolean algebra 27(.%) and a unique smallest
Boolean o algebra o7, (.#) containing .#. That is, if &7 is a Boolean
algebra containing F then o/ (F) C o and if o, is a Boolean algebra
containing .# then @/,(F) C 4,. </ (F) and o/,(.F) are called,
respectively, the Boolean algebra and the Boolean o algebra generated by
the family %

Proof. Denote by § the family of all Boolean algebras &/ containing .%
§ is not empty because it contains the power set G 4 of all subsets of 2 .
Consider the family &7 (%) = NeezS. Now o7 (F) is nonempty since

F CA(F) fR,S € (F)then R, S € & for all & € §F and since each
& is an algebra then RUS €S and R' = 2\ R€ G for all G € 6.
Therefore RUS € &/ (F), R' € &/ (F), and &/ (F € §. If o is any
Boolean algebra containing .# then o/ € § and so &/ (.%) C 7; that is,
o/ (F) is a smallest Boolean algebra containing .%#, as claimed.
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Theorem 11.1.2 (continued)

Theorem 11.1.2. For any given nonempty family .% of subset of a set 2
there is a unique smallest Boolean algebra .7(.%) and a unique smallest
Boolean o algebra .27,(.#) containing .#. That is, if &/ is a Boolean
algebra containing .% then &/(.%) C o/ and if &7, is a Boolean algebra
containing .# then o, (F) C o,. o/ (F) and #,(.F) are called,
respectively, the Boolean algebra and the Boolean o algebra generated by
the family ..

Proof (continued). For uniqueness, if <% (.%#) and <%(.%) are two such
algebras, then & (.%) C @A(F) since A (F) is a smallest algebra and
H(F) C A (F) since oA (F) is a smallest algebra. So

1 (F) = o (F) and the smallest such algebra is unique.
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Theorem 11.1.2 (continued)

Theorem 11.1.2. For any given nonempty family .% of subset of a set 2
there is a unique smallest Boolean algebra .7(.%) and a unique smallest
Boolean o algebra .27,(.#) containing .#. That is, if &/ is a Boolean
algebra containing .% then /(%) C &/ and if <7, is a Boolean algebra
containing .# then o, (F) C o,. o/ (F) and #,(.F) are called,
respectively, the Boolean algebra and the Boolean o algebra generated by
the family ..

Proof (continued). For uniqueness, if <% (.%#) and <%(.%) are two such
algebras, then & (.%) C @A(F) since A (F) is a smallest algebra and
H(F) C A (F) since oA (F) is a smallest algebra. So

1 (F) = o (F) and the smallest such algebra is unique.

The proof for a smallest Boolean o algebra is similar. O
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Theorem 11.1.3

Theorem 11.1.3. The family % of all finite unions
hubU---Ul, where i, b,...,1,€ #"and ke N

of intervals in .#" is identical to the Boolean algebra .7 (.#").
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Theorem 11.1.3

Theorem 11.1.3. The family % of all finite unions
hubU---Ul, where i, b,...,1,€ #"and ke N
of intervals in .#" is identical to the Boolean algebra .7 (.#").

Proof. Since a Boolean algebra is closed under finite unions, then

HBy C A (F"). Now if we show that Zj is a Boolean algebra then we
must have &7 (") C A (since o/ (#") is the smallest Boolean algebra
containing .#") and hence #j = o/ (F"). If R, S € % then
R=hUbU---Uliand S= /U U---UJp for some
hob,... .k, J1,0o,...,dp € %8
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Theorem 11.1.3

Theorem 11.1.3. The family % of all finite unions
hubU---Ul, where i, b,...,1,€ #"and ke N
of intervals in .#" is identical to the Boolean algebra .7 (.#").

Proof. Since a Boolean algebra is closed under finite unions, then

HBy C A (F"). Now if we show that Zj is a Boolean algebra then we
must have &7 (") C A (since o/ (#") is the smallest Boolean algebra
containing .#") and hence #j = o/ (F"). If R, S € % then
R=hUbU---Uliand S= /U U---UJp for some
hob,... .k, J1,0o,...,dp € %67

To prove R' € A, we proceed by induction on k where
R=hUbLU---Ul. Inthe case k =1 we have R = /1 is an interval. In
Exercise 11.1.A it is to be shown that /{ = /M) U@ U ... U Iv) where
10 @) 1) € " and v < 273771 So R’ € BY and Ay is closed
under complements of intervals.
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Theorem 11.1.3 (continued 1)
Proof (continued). Suppose R’ € Af forall R=hLUhLU---U I for
intervals I, b,..., I, € Z". Then

R = (11 Ubu---U /k)/ = Ufn:lJm (1.5)

for some p € N and Ji, o, ..., Jp € F" (since the result holds for k =1

instead), and we have
(/1 UbuUu---U /k+1)/

(I1U/2U Ulk)/mlk+1 by Lemma 11.1.2

= (U ) Wy y...uI) by (1.5)

= ( )N J(l)) ((ufnzlJm) N J(2)) U---u ((UfnzlJm) N J(V))
by Lemma 1.1.1

= (uﬁ, Imn S ) (u‘r’n:lJm n J(2)) U---u (u’,;zlJm n J(V)>

by Lemma I1.1.1.
Modern Algebra April 10,2019 11 /19



Theorem 11.1.3 (continued 2)

Theorem 11.1.3. The family % of all finite unions
hubU---Ul where I, b,...,1,€ #" and k€ N

of intervals in .#" is identical to the Boolean algebra 7(.#").

Proof (continued). Now an intersection of two elements of .#" is an
element of #", s0 Jy N JM), JnJ@ 0 4N JV) e 77 and so
R'=(hUhU---Ul1) € B§ and so by Mathematical Induction %] is
closed under complements. Therefore % is a Boolean algebra and the
claim holds, as explained above. O
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Theorem 11.1.4

Theorem 11.1.4. Every open and every closed set in the Euclidean space
R"™ is a Borel set.
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Theorem 11.1.4

Theorem 11.1.4. Every open and every closed set in the Euclidean space
R"™ is a Borel set.

Proof. Assume O is an open set in R". For each m € N consider the open
intervals in R”

ki —1 ki +1
! < x1 < s

-----

m

K = {x: (X1, %2, ..+, Xn)

e, < Xp <

k2—1<X2<k2—|-1 kp—1 k,,-l—l}

m m
[kll k1+1:| {kgl k2+1:| |:kn1 kn+1
— X X e X
m

) 9 )
m m m m

o

for ki, ko, ..., k, € Z. Then this countable collection of intervals covers
R". Consider the collection of all such intervals lying within O:

R(m) = {Ilgrzz,...,kn | IlE:lL,...,kn C O where ki, ko, ..., kn € N}

Then R(™) is countable for each m € Z.
Modern Algebra April 10,2019 13 /19



Theorem 11.1.4

Theorem 11.1.4 (continued)

Theorem 11.1.4. Every open and every closed set in the Euclidean space
R" is a Borel set.

Proof (continued). Now if x € O then there is an e-neighborhood of x
contained in O (using the Euclidean metric on R” to define such a
neighborhood) and so for m sufficiently large (namely, m > 2n/e) there is

an interval IlEln:llZanykn containing x and lying in the € neighborhood.
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Theorem 11.1.4 (continued)

Theorem 11.1.4. Every open and every closed set in the Euclidean space
R" is a Borel set.

Proof (continued). Now if x € O then there is an e-neighborhood of x
contained in O (using the Euclidean metric on R” to define such a
neighborhood) and so for m sufficiently large (namely, m > 2n/e) there is

an interval I,Elmlzz ..k, containing x and lying in the & neighborhood. Now

let A be the union of the intervals in the R(™ A = Umez.1erm1. Since
each element of each R(™ is a subset of O, then A C O. Since each

x € O is in some element of some R(™ then O C A. So O = A and O is
a countable union of intervals. Since the Borel sets are in the o algebra
generated by .#", then O is a Borel set. Since any closed set C has an
open complement and a o algebra is closed under complements, then each
closed set in R" is also Borel. Ol

Modern Algebra April 10,2019 14 /19



Theorem 11.1.6

Theorem 11.1.6. Every Boolean o algebra is a monotone class, and every
Boolean algebra which is a monotone class is a Boolean algebra.
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Theorem 11.1.6

Theorem 11.1.6. Every Boolean o algebra is a monotone class, and every
Boolean algebra which is a monotone class is a Boolean algebra.

Proof. (a) If <7, is a Boolean ¢ algebra and Ry, Ry, ... € 4, is
monotonically increasing then limy_. . Rx = sup}; Rx € 4. In the case
that 51,55, ... is a monotonically decreasing sequence in <7, and so
limi—oo(S1\ Sk) = U2 1(S1\ Sk) € 4, where by Lemmas I1.1.1 and
11.1.2,

URZ1(S1\ Sk) = Ui (S51n Sp) = S1n (U321 Sp) Sa\ (U2 Sk)'

=S\ (NiZ15k) = S1\ lim Sy

Modern Algebra April 10,2019 15/ 19



Theorem 11.1.6

Theorem 11.1.6. Every Boolean o algebra is a monotone class, and every
Boolean algebra which is a monotone class is a Boolean algebra.

Proof. (a) If <7, is a Boolean ¢ algebra and Ry, Ry, ... € 4, is
monotonically increasing then limy_. . Rx = sup}; Rx € 4. In the case
that 51,55, ... is a monotonically decreasing sequence in <7, and so
limi—oo(S1\ Sk) = U2 1(S1\ Sk) € 4, where by Lemmas I1.1.1 and
11.1.2,

URAA(S1\ S) = URa(S1 15} = 510 (UaSi) 51\ (U S
=S\ (NiZ15k) = S1\ lim Sy

So 51\ limk_co Sk € &, and since 7, is closed under set differences (and
S; contains Sy, S3, .. ) then $; \ (51 \ limg_ oo Sk) = limy_ o Sk € ;. So
4, is a monotone class, as claimed.
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Theorem 11.1.6 (continued)

Theorem 11.1.6. Every Boolean o algebra is a monotone class, and every
Boolean algebra which is a monotone class is a Boolean algebra.
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Theorem 11.1.6 (continued)

Theorem 11.1.6. Every Boolean o algebra is a monotone class, and every
Boolean algebra which is a monotone class is a Boolean algebra.

Proof (continued). (b) If o/ is a Boolean algebra and a monotone class
and 51, 5,,... is an infinite sequence of sets from .27, then with

Ry = supj_; Sk, the sequence Ry, Ry, ... is a monotonically increasing
sequence in A. Since &7 is a monotone class, then

URZ 1Sk = U2 1Rk = lim,_.oo Ry € @7. So &/ is a Boolean algebra closed
under countable unions and hence &/ is a Boolean ¢ algebra, as

claimed. ]
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Theorem I1.1.7

Theorem 11.1.7. If o/ is a Boolean algebra and Mi(.27) is the monotone
class generated by .7, then (<) is identical with the Boolean o algebra
o, (/) generated by the family o7 of sets.
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Theorem I1.1.7

Theorem 11.1.7. If o/ is a Boolean algebra and Mi(.27) is the monotone
class generated by .7, then (<) is identical with the Boolean o algebra
o, (/) generated by the family o7 of sets.

Proof. By Theorem 11.1.6, <7,(.<7) is a monotone class and by definition
M (/) is the smallest monotone class containing <7, so M(/) C o, ().
We will show that 9t(.<7) is a Boolean o algebra containing <. Since
(/) is the smallest o algebra containing <7, then this will imply

Ay (/) C IM(/) and hence o7, (/) = M().
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Theorem I1.1.7

Theorem 11.1.7. If o/ is a Boolean algebra and Mi(.27) is the monotone
class generated by .7, then (<) is identical with the Boolean o algebra
o, (/) generated by the family o7 of sets.
Proof. By Theorem 11.1.6, <7,(.<7) is a monotone class and by definition
M (/) is the smallest monotone class containing <7, so M(/) C o, ().
We will show that 9t(.<7) is a Boolean o algebra containing <. Since
(/) is the smallest o algebra containing <7, then this will imply
Ay (/) C IM(/) and hence o7, (/) = M().
For R € M(«7), denote by J(R) the family of sets S € M(«/) such that
S’ RUS € M(&/). So by definition, N(7) C M(</). If
51,52, ... € M(R) is a monotone sequence then, since M(.<7) is a
monotone class, by Exercise 11.1.6 (limp_00 Sp)" = limp_oo S}, € M(),
and the sequence of sets RU 51, RU Sy, ... € M() is also a monotone
sequence and, again by Exercise 11.1.6,
(limp—00 Sn) UR = limp—oo(S, U R) € M(/). So, by the definition of
N(R), limp—oo Sn € N(R) and so N(R) is a monotone class.
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Theorem 11.1.7 (continued 1)

Proof (continued). In addition, if R € & then DM(R) is not empty
because it contains <7, since <7 is a Boolean algebra. In this case, DI(R) is
a monotone class containing .7 ad hence M(«7) C N(R). Therefore
MN(R) =M() for R € of. Since o is a Boolean algebra of sets then

2 = 9M(). By the definition of 9(.2"), for every S € M(Z") = M()
we have S’ € M() so that M(</) is closed under complements.
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Theorem 11.1.7 (continued 1)

Proof (continued). In addition, if R € & then DM(R) is not empty
because it contains <7, since <7 is a Boolean algebra. In this case, DI(R) is
a monotone class containing .7 ad hence M(«7) C N(R). Therefore
MN(R) =M() for R € of. Since o is a Boolean algebra of sets then

2 = 9M(). By the definition of 9(.2"), for every S € M(Z") = M()
we have S’ € M() so that M(</) is closed under complements.

Furthermore, if R € <7, then for an arbitrary S € (%) we have
SeN(R)=M(F), i.e., RUS € M(); consequently (by the definition
of N(S)), R € N(S). Therefore o7 C M(S). As shown above, N(S) is a
monotone class and, since it contains <7, we have 9(«7) C MN(S). Since
MN(S) C M(/) by definition, then J(S) = M(«7) where S is any set in
M(</). So for any R, S € N(S) = M(«/) we have (by the definition of
N(S)) that RUS, R’ € N(S) = M(). Therefore, M(<) is a Boolean
algebra.
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Theorem 11.1.7

Theorem 11.1.7 (continued 2)

Theorem 11.1.7. If o/ is a Boolean algebra and 9(.<7) is the monotone
class generated by o7, then 90t(.<7) is identical with the Boolean o algebra
o, (/) generated by the family .o of sets.

Proof (continued). Since M(.«7) is a Boolean algebra which is a

monotone class then, by Theorem 11.1.6, M(.o7) is a Boolean o algebra.
The result now follows, as explained above. O
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