Modern Algebra

Chapter II. Measure Theory and Hilbert Spaces of Functions II.1. Measurable Spaces—Proofs of Theorems

Modern Algebra

Table of contents

1 Lemma II.1.1

2 Lemma II.1.2

- 3 Theorem II.1.1
 - 4 Theorem II.1.2
- 5 Theorem II.1.3
- 6 Theorem II.1.4
- 7 Theorem II.1.6

8 Theorem II.1.7

Lemma II.1.1. If \mathscr{F} is a family of sets and R is any given set, then

$$R\cap (\cup_{S\in\mathscr{F}}S)=\cup_{S\in\mathscr{F}}(R\cap S).$$

Proof. If $\xi \in R \cap (\bigcup_{S \in \mathscr{F}} S)$ then $\xi \in R$ and $\xi \in \bigcup_{S \in \mathscr{F}} S$. That is, $\xi \in T$ for some $T \in \mathscr{F}$. Then $\xi \in R \cap T$ where $T \in \mathscr{F}$ and so $\xi \in \bigcup_{S \in \mathscr{F}} (R \cap S)$.

Lemma II.1.1. If \mathscr{F} is a family of sets and R is any given set, then

$$R \cap (\cup_{S \in \mathscr{F}} S) = \cup_{S \in \mathscr{F}} (R \cap S).$$

Proof. If $\xi \in R \cap (\bigcup_{S \in \mathscr{F}} S)$ then $\xi \in R$ and $\xi \in \bigcup_{S \in \mathscr{F}} S$. That is, $\xi \in T$ for some $T \in \mathscr{F}$. Then $\xi \in R \cap T$ where $T \in \mathscr{F}$ and so $\xi \in \bigcup_{S \in \mathscr{F}} (R \cap S)$.

Conversely, if $\eta \in \bigcup_{S \in \mathscr{F}} (R \cap S)$, then $\eta \in R \cap T$ for some $T \in \mathscr{F}$. The $\eta \in R$ and $\eta \in T$ where $T \in \mathscr{F}$. Then $\eta \in R$ and $\eta \in T$, so that $\eta \in \bigcup_{S \in \mathscr{F}} S$. Therefore $\eta \in R \cap (\bigcup_{S \in \mathscr{F}} S)$.

Lemma II.1.1. If \mathscr{F} is a family of sets and R is any given set, then

$$R \cap (\cup_{S \in \mathscr{F}} S) = \cup_{S \in \mathscr{F}} (R \cap S).$$

Proof. If $\xi \in R \cap (\bigcup_{S \in \mathscr{F}} S)$ then $\xi \in R$ and $\xi \in \bigcup_{S \in \mathscr{F}} S$. That is, $\xi \in T$ for some $T \in \mathscr{F}$. Then $\xi \in R \cap T$ where $T \in \mathscr{F}$ and so $\xi \in \bigcup_{S \in \mathscr{F}} (R \cap S)$.

Conversely, if $\eta \in \bigcup_{S \in \mathscr{F}} (R \cap S)$, then $\eta \in R \cap T$ for some $T \in \mathscr{F}$. The $\eta \in R$ and $\eta \in T$ where $T \in \mathscr{F}$. Then $\eta \in R$ and $\eta \in T$, so that $\eta \in \bigcup_{S \in \mathscr{F}} S$. Therefore $\eta \in R \cap (\bigcup_{S \in \mathscr{F}} S)$.

Hence $R \cap (\cup_{S \in \mathscr{F}} S) = \cup_{S \in \mathscr{F}} (R \cap S)$, as claimed.

Lemma II.1.1. If \mathscr{F} is a family of sets and R is any given set, then

$$R \cap (\cup_{S \in \mathscr{F}} S) = \cup_{S \in \mathscr{F}} (R \cap S).$$

Proof. If $\xi \in R \cap (\bigcup_{S \in \mathscr{F}} S)$ then $\xi \in R$ and $\xi \in \bigcup_{S \in \mathscr{F}} S$. That is, $\xi \in T$ for some $T \in \mathscr{F}$. Then $\xi \in R \cap T$ where $T \in \mathscr{F}$ and so $\xi \in \bigcup_{S \in \mathscr{F}} (R \cap S)$.

Conversely, if $\eta \in \bigcup_{S \in \mathscr{F}} (R \cap S)$, then $\eta \in R \cap T$ for some $T \in \mathscr{F}$. The $\eta \in R$ and $\eta \in T$ where $T \in \mathscr{F}$. Then $\eta \in R$ and $\eta \in T$, so that $\eta \in \bigcup_{S \in \mathscr{F}} S$. Therefore $\eta \in R \cap (\bigcup_{S \in \mathscr{F}} S)$.

Hence $R \cap (\cup_{S \in \mathscr{F}} S) = \cup_{S \in \mathscr{F}} (R \cap S)$, as claimed.

Lemma II.1.2. DeMorgan's Laws

Lemma II.1.2. DeMorgan's Laws.

If \mathscr{F} is a family of subsets of a set \mathscr{X} , and if for any given set S we denote by $S' = \mathscr{X} \setminus S$ the *complement* of S with respect to \mathscr{X} , then

$$(\cup_{S\in\mathscr{F}}S)'=\cap_{S\in\mathscr{F}}S'$$
 and $(\cap_{S\in\mathscr{F}}S)'=\cup_{S\in\mathscr{F}}S'.$

Proof. To establish the first claim, let $\xi \in (\bigcup_{S \in \mathscr{F}} S)'$. Then $\xi \notin \bigcup_{S \in \mathscr{F}} S$ and so $\xi \notin S$ for all $S \in \mathscr{F}$. That is, $\xi \in S'$ for all $S \in \mathscr{F}$ and so $\xi \in \bigcap_{S \in \mathscr{F}} S'$. Hence $(\bigcup_{S \in \mathscr{F}} S)' \subset \bigcap_{S \in \mathscr{F}} S'$.

Lemma II.1.2. DeMorgan's Laws

Lemma II.1.2. DeMorgan's Laws.

If \mathscr{F} is a family of subsets of a set \mathscr{X} , and if for any given set S we denote by $S' = \mathscr{X} \setminus S$ the *complement* of S with respect to \mathscr{X} , then

$$(\cup_{S\in\mathscr{F}}S)'=\cap_{S\in\mathscr{F}}S'$$
 and $(\cap_{S\in\mathscr{F}}S)'=\cup_{S\in\mathscr{F}}S'.$

Proof. To establish the first claim, let $\xi \in (\bigcup_{S \in \mathscr{F}} S)'$. Then $\xi \notin \bigcup_{S \in \mathscr{F}} S$ and so $\xi \notin S$ for all $S \in \mathscr{F}$. That is, $\xi \in S'$ for all $S \in \mathscr{F}$ and so $\xi \in \cap_{S \in \mathscr{F}} S'$. Hence $(\bigcup_{S \in \mathscr{F}} S)' \subset \cap_{S \in \mathscr{F}} S'$.

Conversely, if $\eta \in \bigcap_{S \in \mathscr{F}} S'$ then $\eta \in S'$ for all $S \in \mathscr{F}$. That is, $\eta \notin S$ for all $S \in \mathscr{F}$. Therefore $\eta \notin \bigcup_{S \in \mathscr{F}} S$ and so $\eta \in (\bigcup_{S \in \mathscr{F}} S)'$. Hence $\bigcap_{S \in \mathscr{F}} S' \subset (\bigcup_{S \in \mathscr{F}} S)'$ and so $(\bigcup_{S \in \mathscr{F}} S)' = \bigcap_{S \in \mathscr{F}} S'$, as claimed.

Lemma II.1.2. DeMorgan's Laws

Lemma II.1.2. DeMorgan's Laws.

If \mathscr{F} is a family of subsets of a set \mathscr{X} , and if for any given set S we denote by $S' = \mathscr{X} \setminus S$ the *complement* of S with respect to \mathscr{X} , then

$$(\cup_{S\in\mathscr{F}}S)'=\cap_{S\in\mathscr{F}}S'$$
 and $(\cap_{S\in\mathscr{F}}S)'=\cup_{S\in\mathscr{F}}S'.$

Proof. To establish the first claim, let $\xi \in (\bigcup_{S \in \mathscr{F}} S)'$. Then $\xi \notin \bigcup_{S \in \mathscr{F}} S$ and so $\xi \notin S$ for all $S \in \mathscr{F}$. That is, $\xi \in S'$ for all $S \in \mathscr{F}$ and so $\xi \in \bigcap_{S \in \mathscr{F}} S'$. Hence $(\bigcup_{S \in \mathscr{F}} S)' \subset \bigcap_{S \in \mathscr{F}} S'$.

Conversely, if $\eta \in \bigcap_{S \in \mathscr{F}} S'$ then $\eta \in S'$ for all $S \in \mathscr{F}$. That is, $\eta \notin S$ for all $S \in \mathscr{F}$. Therefore $\eta \notin \bigcup_{S \in \mathscr{F}} S$ and so $\eta \in (\bigcup_{S \in \mathscr{F}} S)'$. Hence $\bigcap_{S \in \mathscr{F}} S' \subset (\bigcup_{S \in \mathscr{F}} S)'$ and so $(\bigcup_{S \in \mathscr{F}} S)' = \bigcap_{S \in \mathscr{F}} S'$, as claimed.

Lemma II.1.2 (continued)

Lemma II.1.2. DeMorgan's Laws.

If \mathscr{F} is a family of subsets of a set \mathscr{X} , and if for any given set S we denote by $S' = \mathscr{X} \setminus S$ the *complement* of S with respect to \mathscr{X} , then

$$(\cup_{S\in\mathscr{F}}S)'=\cap_{S\in\mathscr{F}}S'$$
 and $(\cap_{S\in\mathscr{F}}S)'=\cup_{S\in\mathscr{F}}S'.$

Proof (continued). We can take a short cut to prove the second claim. Define $\mathscr{F}' = \{S' \mid S \in \mathscr{F}\}$. Then applying the first claim to family \mathscr{F}' we have $(\bigcup_{S' \in \mathscr{F}'} S')' = \bigcap_{S' \in \mathscr{F}'} S'$ and taking complements of both sides

$$\left(\left(\cup_{S'\in\mathscr{F}'}S'\right)'\right)' = \left(\cap_{S'\in\mathscr{F}'}S'\right)' \text{ or } \cup_{S'\in\mathscr{F}'}S' = \left(\cap_{S'\in\mathscr{F}'}S'\right)'$$

(since (R')' = R'' = R for any set R). Replacing S' with S (and \mathscr{F} with \mathscr{F}) gives $\bigcup_{S \in \mathscr{F}} S = (\bigcap_{S \in \mathscr{F}} S)'$, as claimed.

Theorem II.1.1. If the class \mathscr{K} of subsets of a set \mathscr{X} is a Boolean algebra, then

- (a) the entire set $\mathscr X$ and the empty set \varnothing belong to $\mathscr K,$
- (b) the intersection $R \cap S$ belongs to $\mathscr K$ whenever $R,S \in \mathscr K$, and
- (c) the difference $R \setminus S$ and symmetric difference $R \triangle S = (R \setminus S) \cup (S \setminus R)$ belongs to \mathscr{K} whenever $R, S \in \mathscr{K}$.

Proof. 1. If $R \subset \mathscr{X}$ and $R \in \mathscr{K}$, then $R' \in \mathscr{K}$ and so $R \cup R' = \mathscr{X} \in \mathscr{K}$, as claimed. Then $\mathscr{X}' = \varnothing \in \mathscr{K}$, as claimed.

Theorem II.1.1. If the class $\mathscr K$ of subsets of a set $\mathscr X$ is a Boolean algebra, then

- (a) the entire set $\mathscr X$ and the empty set \varnothing belong to $\mathscr K,$
- (b) the intersection $R \cap S$ belongs to $\mathscr K$ whenever $R,S \in \mathscr K$, and
- (c) the difference $R \setminus S$ and symmetric difference $R \triangle S = (R \setminus S) \cup (S \setminus R)$ belongs to \mathscr{K} whenever $R, S \in \mathscr{K}$.

Proof. 1. If $R \subset \mathscr{X}$ and $R \in \mathscr{K}$, then $R' \in \mathscr{K}$ and so $R \cup R' = \mathscr{X} \in \mathscr{K}$, as claimed. Then $\mathscr{X}' = \varnothing \in \mathscr{K}$, as claimed.

2. For $R, S \in \mathcal{H}$ we have $R \cup S \in \mathcal{H}$ and $(R \cup S)' = R' \cap S' \in \mathcal{H}$ (by Lemma II.1.1), as claimed.

Theorem II.1.1. If the class $\mathscr K$ of subsets of a set $\mathscr X$ is a Boolean algebra, then

- (a) the entire set $\mathscr X$ and the empty set \varnothing belong to $\mathscr K,$
- (b) the intersection $R \cap S$ belongs to $\mathscr K$ whenever $R,S \in \mathscr K$, and

(c) the difference $R \setminus S$ and symmetric difference $R \triangle S = (R \setminus S) \cup (S \setminus R)$ belongs to \mathscr{K} whenever $R, S \in \mathscr{K}$.

Proof. 1. If $R \subset \mathscr{X}$ and $R \in \mathscr{K}$, then $R' \in \mathscr{K}$ and so $R \cup R' = \mathscr{X} \in \mathscr{K}$, as claimed. Then $\mathscr{X}' = \varnothing \in \mathscr{K}$, as claimed.

2. For $R, S \in \mathscr{K}$ we have $R \cup S \in \mathscr{K}$ and $(R \cup S)' = R' \cap S' \in \mathscr{K}$ (by Lemma II.1.1), as claimed.

Theorem II.1.1 (continued)

Theorem II.1.1. If the class $\mathscr K$ of subsets of a set $\mathscr X$ is a Boolean algebra, then

- (a) the entire set ${\mathscr X}$ and the empty set ${\mathscr D}$ belong to ${\mathscr K},$
- (b) the intersection $R \cap S$ belongs to $\mathscr K$ whenever $R, S \in \mathscr K$, and
- (c) the difference $R \setminus S$ and symmetric difference $R \triangle S = (R \setminus S) \cup (S \setminus R)$ belongs to \mathscr{K} whenever $R, S \in \mathscr{K}$.

Proof (continued). 3. For $R, S \in \mathscr{K}$ we have

$$R \setminus S = R \cap S'$$

= $(R' \cup S'')'$ by Lemma II.1.2
= $(R' \cup S)'$
 $\in \mathcal{K}$ since \mathcal{K} is a Boolean algebra

Similarly, $S \setminus R \in \mathscr{K}$. Hence $R \triangle S = (R \setminus S) \cup (S \setminus R) \in \mathscr{K}$, as claimed.

Theorem II.1.2. For any given nonempty family \mathscr{F} of subset of a set \mathscr{X} there is a unique smallest Boolean algebra $\mathscr{A}(\mathscr{F})$ and a unique smallest Boolean σ algebra $\mathscr{A}_{\sigma}(\mathscr{F})$ containing \mathscr{F} . That is, if \mathscr{A} is a Boolean algebra containing \mathscr{F} then $\mathscr{A}(\mathscr{F}) \subset \mathscr{A}$ and if \mathscr{A}_{σ} is a Boolean algebra containing \mathscr{F} then $\mathscr{A}_{\sigma}(\mathscr{F}) \subset \mathscr{A}_{\sigma}$. $\mathscr{A}(\mathscr{F})$ and $\mathscr{A}_{\sigma}(\mathscr{F})$ are called, respectively, the Boolean algebra and the Boolean σ algebra generated by the family \mathscr{F} .

Proof. Denote by \mathfrak{F} the family of all Boolean algebras \mathscr{A} containing \mathscr{F} . \mathfrak{F} is not empty because it contains the power set $\mathfrak{S}_{\mathscr{X}}$ of all subsets of \mathscr{X} . Consider the family $\mathscr{A}(\mathscr{F}) = \bigcap_{\mathfrak{S} \in \mathfrak{F}} \mathfrak{S}$. Now $\mathscr{A}(\mathscr{F})$ is nonempty since $\mathscr{F} \subset \mathscr{A}(\mathscr{F})$.

Theorem II.1.2. For any given nonempty family \mathscr{F} of subset of a set \mathscr{X} there is a unique smallest Boolean algebra $\mathscr{A}(\mathscr{F})$ and a unique smallest Boolean σ algebra $\mathscr{A}_{\sigma}(\mathscr{F})$ containing \mathscr{F} . That is, if \mathscr{A} is a Boolean algebra containing \mathscr{F} then $\mathscr{A}(\mathscr{F}) \subset \mathscr{A}$ and if \mathscr{A}_{σ} is a Boolean algebra containing \mathscr{F} then $\mathscr{A}_{\sigma}(\mathscr{F}) \subset \mathscr{A}_{\sigma}$. $\mathscr{A}(\mathscr{F})$ and $\mathscr{A}_{\sigma}(\mathscr{F})$ are called, respectively, the Boolean algebra and the Boolean σ algebra generated by the family \mathscr{F} .

Proof. Denote by \mathfrak{F} the family of all Boolean algebras \mathscr{A} containing \mathscr{F} . \mathfrak{F} is not empty because it contains the power set $\mathfrak{S}_{\mathscr{X}}$ of all subsets of \mathscr{X} . Consider the family $\mathscr{A}(\mathscr{F}) = \bigcap_{\mathfrak{S} \in \mathfrak{F}} \mathfrak{S}$. Now $\mathscr{A}(\mathscr{F})$ is nonempty since $\mathscr{F} \subset \mathscr{A}(\mathscr{F})$. If $R, S \in \mathscr{A}(\mathscr{F})$ then $R, S \in \mathfrak{S}$ for all $\mathfrak{S} \in \mathfrak{F}$ and since each \mathfrak{G} is an algebra then $R \cup S \in \mathfrak{S}$ and $R' = \mathscr{X} \setminus R \in \mathfrak{S}$ for all $\mathfrak{S} \in \mathfrak{G}$. Therefore $R \cup S \in \mathscr{A}(\mathscr{F}), R' \in \mathscr{A}(\mathscr{F})$, and $\mathscr{A}(\mathscr{F} \in \mathfrak{F})$. If \mathscr{A} is any Boolean algebra containing \mathscr{F} then $\mathscr{A} \in \mathfrak{F}$ and so $\mathscr{A}(\mathscr{F}) \subset \mathscr{A}$; that is, $\mathscr{A}(\mathscr{F})$ is a smallest Boolean algebra containing \mathscr{F} , as claimed.

Theorem II.1.2. For any given nonempty family \mathscr{F} of subset of a set \mathscr{X} there is a unique smallest Boolean algebra $\mathscr{A}(\mathscr{F})$ and a unique smallest Boolean σ algebra $\mathscr{A}_{\sigma}(\mathscr{F})$ containing \mathscr{F} . That is, if \mathscr{A} is a Boolean algebra containing \mathscr{F} then $\mathscr{A}(\mathscr{F}) \subset \mathscr{A}$ and if \mathscr{A}_{σ} is a Boolean algebra containing \mathscr{F} then $\mathscr{A}_{\sigma}(\mathscr{F}) \subset \mathscr{A}_{\sigma}$. $\mathscr{A}(\mathscr{F})$ and $\mathscr{A}_{\sigma}(\mathscr{F})$ are called, respectively, the Boolean algebra and the Boolean σ algebra generated by the family \mathscr{F} .

Proof. Denote by \mathfrak{F} the family of all Boolean algebras \mathscr{A} containing \mathscr{F} . \mathfrak{F} is not empty because it contains the power set $\mathfrak{S}_{\mathscr{X}}$ of all subsets of \mathscr{X} . Consider the family $\mathscr{A}(\mathscr{F}) = \bigcap_{\mathfrak{S} \in \mathfrak{F}} \mathfrak{S}$. Now $\mathscr{A}(\mathscr{F})$ is nonempty since $\mathscr{F} \subset \mathscr{A}(\mathscr{F})$. If $R, S \in \mathscr{A}(\mathscr{F})$ then $R, S \in \mathfrak{S}$ for all $\mathfrak{S} \in \mathfrak{F}$ and since each \mathfrak{G} is an algebra then $R \cup S \in \mathfrak{S}$ and $R' = \mathscr{X} \setminus R \in \mathfrak{S}$ for all $\mathfrak{S} \in \mathfrak{G}$. Therefore $R \cup S \in \mathscr{A}(\mathscr{F}), R' \in \mathscr{A}(\mathscr{F})$, and $\mathscr{A}(\mathscr{F} \in \mathfrak{F})$. If \mathscr{A} is any Boolean algebra containing \mathscr{F} then $\mathscr{A} \in \mathfrak{F}$ and so $\mathscr{A}(\mathscr{F}) \subset \mathscr{A}$; that is, $\mathscr{A}(\mathscr{F})$ is a smallest Boolean algebra containing \mathscr{F} , as claimed.

Theorem II.1.2 (continued)

Theorem II.1.2. For any given nonempty family \mathscr{F} of subset of a set \mathscr{X} there is a unique smallest Boolean algebra $\mathscr{A}(\mathscr{F})$ and a unique smallest Boolean σ algebra $\mathscr{A}_{\sigma}(\mathscr{F})$ containing \mathscr{F} . That is, if \mathscr{A} is a Boolean algebra containing \mathscr{F} then $\mathscr{A}(\mathscr{F}) \subset \mathscr{A}$ and if \mathscr{A}_{σ} is a Boolean algebra containing \mathscr{F} then $\mathscr{A}_{\sigma}(\mathscr{F}) \subset \mathscr{A}_{\sigma}$. $\mathscr{A}(\mathscr{F})$ and $\mathscr{A}_{\sigma}(\mathscr{F})$ are called, respectively, the Boolean algebra and the Boolean σ algebra generated by the family \mathscr{F} .

Proof (continued). For uniqueness, if $\mathscr{A}_1(\mathscr{F})$ and $\mathscr{A}_2(\mathscr{F})$ are two such algebras, then $\mathscr{A}_1(\mathscr{F}) \subset \mathscr{A}_2(\mathscr{F})$ since $\mathscr{A}_1(\mathscr{F})$ is a smallest algebra and $\mathscr{A}_2(\mathscr{F}) \subset \mathscr{A}_1(\mathscr{F})$ since $\mathscr{A}_2(\mathscr{F})$ is a smallest algebra. So $\mathscr{A}_1(\mathscr{F}) = \mathscr{A}_2(\mathscr{F})$ and the smallest such algebra is unique.

The proof for a smallest Boolean σ algebra is similar.

Theorem II.1.2 (continued)

Theorem II.1.2. For any given nonempty family \mathscr{F} of subset of a set \mathscr{X} there is a unique smallest Boolean algebra $\mathscr{A}(\mathscr{F})$ and a unique smallest Boolean σ algebra $\mathscr{A}_{\sigma}(\mathscr{F})$ containing \mathscr{F} . That is, if \mathscr{A} is a Boolean algebra containing \mathscr{F} then $\mathscr{A}(\mathscr{F}) \subset \mathscr{A}$ and if \mathscr{A}_{σ} is a Boolean algebra containing \mathscr{F} then $\mathscr{A}_{\sigma}(\mathscr{F}) \subset \mathscr{A}_{\sigma}$. $\mathscr{A}(\mathscr{F})$ and $\mathscr{A}_{\sigma}(\mathscr{F})$ are called, respectively, the Boolean algebra and the Boolean σ algebra generated by the family \mathscr{F} .

Proof (continued). For uniqueness, if $\mathscr{A}_1(\mathscr{F})$ and $\mathscr{A}_2(\mathscr{F})$ are two such algebras, then $\mathscr{A}_1(\mathscr{F}) \subset \mathscr{A}_2(\mathscr{F})$ since $\mathscr{A}_1(\mathscr{F})$ is a smallest algebra and $\mathscr{A}_2(\mathscr{F}) \subset \mathscr{A}_1(\mathscr{F})$ since $\mathscr{A}_2(\mathscr{F})$ is a smallest algebra. So $\mathscr{A}_1(\mathscr{F}) = \mathscr{A}_2(\mathscr{F})$ and the smallest such algebra is unique.

The proof for a smallest Boolean σ algebra is similar.

Theorem II.1.3. The family \mathscr{B}_0^n of all finite unions

 $I_1 \cup I_2 \cup \cdots \cup I_k$ where $I_1, I_2, \ldots, I_n \in \mathscr{I}^n$ and $k \in \mathbb{N}$

of intervals in \mathscr{I}^n is identical to the Boolean algebra $\mathscr{A}(\mathscr{I}^n)$.

Proof. Since a Boolean algebra is closed under finite unions, then $\mathscr{B}_0^n \subset \mathscr{A}(\mathscr{I}^n)$. Now if we show that \mathscr{B}_0^n is a Boolean algebra then we must have $\mathscr{A}(\mathscr{I}^n) \subset \mathscr{B}_0^n$ (since $\mathscr{A}(\mathscr{I}^n)$ is the smallest Boolean algebra containing \mathscr{I}^n) and hence $\mathscr{B}_0^n = \mathscr{A}(\mathscr{I}^n)$. If $R, S \in \mathscr{B}_0^n$ then $R = l_1 \cup l_2 \cup \cdots \cup l_k$ and $S = J_1 \cup J_2 \cup \cdots \cup J_\ell$ for some $l_1, l_2, \ldots, l_k, J_1, J_2, \ldots, J_\ell \in \mathscr{B}_0^n$.

Theorem II.1.3. The family \mathscr{B}_0^n of all finite unions

 $I_1 \cup I_2 \cup \cdots \cup I_k$ where $I_1, I_2, \ldots, I_n \in \mathscr{I}^n$ and $k \in \mathbb{N}$

of intervals in \mathscr{I}^n is identical to the Boolean algebra $\mathscr{A}(\mathscr{I}^n)$.

Proof. Since a Boolean algebra is closed under finite unions, then $\mathscr{B}_0^n \subset \mathscr{A}(\mathscr{I}^n)$. Now if we show that \mathscr{B}_0^n is a Boolean algebra then we must have $\mathscr{A}(\mathscr{I}^n) \subset \mathscr{B}_0^n$ (since $\mathscr{A}(\mathscr{I}^n)$ is the smallest Boolean algebra containing \mathscr{I}^n) and hence $\mathscr{B}_0^n = \mathscr{A}(\mathscr{I}^n)$. If $R, S \in \mathscr{B}_0^n$ then $R = I_1 \cup I_2 \cup \cdots \cup I_k$ and $S = J_1 \cup J_2 \cup \cdots \cup J_\ell$ for some $I_1, I_2, \ldots, I_k, J_1, J_2, \ldots, J_\ell \in \mathscr{B}_0^n$.

To prove $R' \in \mathscr{B}_0^n$, we proceed by induction on k where $R = I_1 \cup I_2 \cup \cdots \cup I_k$. In the case k = 1 we have $R = I_1$ is an interval. In Exercise II.1.A it is to be shown that $I'_1 = I^{(1)} \cup I^{(2)} \cup \cdots \cup I^{(v)}$ where $I^{(1)}, I^{(2)}, \ldots, I^{(v)} \in \mathscr{I}^n$ and $v \leq 2^n 3^{n-1}$. So $R' \in \mathscr{B}_0^n$ and \mathscr{B}_0^n is closed under complements of intervals.

Theorem II.1.3. The family \mathscr{B}_0^n of all finite unions

 $I_1 \cup I_2 \cup \cdots \cup I_k$ where $I_1, I_2, \ldots, I_n \in \mathscr{I}^n$ and $k \in \mathbb{N}$

of intervals in \mathscr{I}^n is identical to the Boolean algebra $\mathscr{A}(\mathscr{I}^n)$.

Proof. Since a Boolean algebra is closed under finite unions, then $\mathscr{B}_0^n \subset \mathscr{A}(\mathscr{I}^n)$. Now if we show that \mathscr{B}_0^n is a Boolean algebra then we must have $\mathscr{A}(\mathscr{I}^n) \subset \mathscr{B}_0^n$ (since $\mathscr{A}(\mathscr{I}^n)$ is the smallest Boolean algebra containing \mathscr{I}^n) and hence $\mathscr{B}_0^n = \mathscr{A}(\mathscr{I}^n)$. If $R, S \in \mathscr{B}_0^n$ then $R = I_1 \cup I_2 \cup \cdots \cup I_k$ and $S = J_1 \cup J_2 \cup \cdots \cup J_\ell$ for some $I_1, I_2, \ldots, I_k, J_1, J_2, \ldots, J_\ell \in \mathscr{B}_0^n$.

To prove $R' \in \mathscr{B}_0^n$, we proceed by induction on k where $R = I_1 \cup I_2 \cup \cdots \cup I_k$. In the case k = 1 we have $R = I_1$ is an interval. In Exercise II.1.A it is to be shown that $I'_1 = I^{(1)} \cup I^{(2)} \cup \cdots \cup I^{(v)}$ where $I^{(1)}, I^{(2)}, \ldots, I^{(v)} \in \mathscr{I}^n$ and $v \leq 2^n 3^{n-1}$. So $R' \in \mathscr{B}_0^n$ and \mathscr{B}_0^n is closed under complements of intervals.

Theorem II.1.3 (continued 1)

Proof (continued). Suppose $R' \in \mathscr{B}_0^n$ for all $R = I_1 \cup I_2 \cup \cdots \cup I_k$ for intervals $I_1, I_2, \ldots, I_k \in \mathscr{I}^n$. Then

$$R' = (I_1 \cup I_2 \cup \cdots \cup I_k)' = \cup_{m=1}^p J_m \tag{1.5}$$

for some $p \in \mathbb{N}$ and $J_1, J_2, \ldots, J_p \in \mathscr{I}^n$ (since the result holds for k = 1 instead), and we have

$$(I_1 \cup I_2 \cup \cdots \cup I_{k+1})'$$

$$= (I_{1} \cup I_{2} \cup \cdots \cup I_{k})' \cap I_{k+1} \text{ by Lemma II.1.2}$$

$$= (\cup_{m=1}^{p} J_{m}) \cap (J^{(1)} \cup J^{(2)} \cup \cdots \cup J^{(v)}) \text{ by (1.5)}$$

$$= ((\cup_{m=1}^{p} J_{m}) \cap J^{(1)}) \cup ((\cup_{m=1}^{p} J_{m}) \cap J^{(2)}) \cup \cdots \cup ((\cup_{m=1}^{p} J_{m}) \cap J^{(v)})$$
by Lemma II.1.1
$$= (\cup_{m=1}^{p} J_{m} \cap J^{(1)}) \cup (\cup_{m=1}^{p} J_{m} \cap J^{(2)}) \cup \cdots \cup (\bigcup_{m=1}^{p} J_{m} \cap J^{(v)})$$
by Lemma II.1.1

Theorem II.1.3 (continued 2)

Theorem II.1.3. The family \mathscr{B}_0^n of all finite unions

 $I_1 \cup I_2 \cup \cdots \cup I_k$ where $I_1, I_2, \ldots, I_n \in \mathscr{I}^n$ and $k \in \mathbb{N}$

of intervals in \mathscr{I}^n is identical to the Boolean algebra $\mathscr{A}(\mathscr{I}^n)$.

Proof (continued). Now an intersection of two elements of \mathscr{I}^n is an element of \mathscr{I}^n , so $J_m \cap J^{(1)}, J_m \cap J^{(2)}, \ldots, J_m \cap J^{(v)} \in \mathscr{I}^n$ and so $R' = (I_1 \cup I_2 \cup \cdots \cup I_{k+1}) \in \mathscr{B}_0^n$ and so by Mathematical Induction \mathscr{B}_0^n is closed under complements. Therefore \mathscr{B}_0^n is a Boolean algebra and the claim holds, as explained above.

Theorem II.1.4. Every open and every closed set in the Euclidean space \mathbb{R}^n is a Borel set.

Proof. Assume O is an open set in \mathbb{R}^n . For each $m \in \mathbb{N}$ consider the open intervals in \mathbb{R}^n

$$I_{k_{1},k_{2},\dots,k_{n}}^{(m)} = \left\{ x = (x_{1}, x_{2},\dots,x_{n}) \left| \frac{k_{1}-1}{m} < x_{1} < \frac{k_{1}+1}{m}, \frac{k_{2}-1}{m} < x_{2} < \frac{k_{2}+1}{m},\dots,\frac{k_{n}-1}{m} < x_{n} < \frac{k_{n}+1}{m} \right\} \right\}$$
$$= \left[\frac{k_{1}-1}{m}, \frac{k_{1}+1}{m} \right] \times \left[\frac{k_{2}-1}{m}, \frac{k_{2}+1}{m} \right] \times \dots \times \left[\frac{k_{n}-1}{m}, \frac{k_{n}+1}{m} \right]$$

for $k_1, k_2, \ldots, k_n \in \mathbb{Z}$. Then this countable collection of intervals covers \mathbb{R}^n . Consider the collection of all such intervals lying within O:

$$R^{(m)} = \{ I^{(m)}_{k_1, k_2, \dots, k_n} \mid I^{(m)}_{k_1, k_2, \dots, k_n} \subset O \text{ where } k_1, k_2, \dots, k_n \in \mathbb{N} \}.$$

Modern Algebra

Then $R^{(m)}$ is countable for each $m \in \mathbb{Z}$.

Theorem II.1.4. Every open and every closed set in the Euclidean space \mathbb{R}^n is a Borel set.

Proof. Assume O is an open set in \mathbb{R}^n . For each $m \in \mathbb{N}$ consider the open intervals in \mathbb{R}^n

$$I_{k_{1},k_{2},\dots,k_{n}}^{(m)} = \left\{ x = (x_{1}, x_{2},\dots, x_{n}) \left| \frac{k_{1}-1}{m} < x_{1} < \frac{k_{1}+1}{m}, \frac{k_{2}-1}{m} < x_{2} < \frac{k_{2}+1}{m},\dots,\frac{k_{n}-1}{m} < x_{n} < \frac{k_{n}+1}{m} \right\} \right.$$
$$= \left[\frac{k_{1}-1}{m}, \frac{k_{1}+1}{m} \right] \times \left[\frac{k_{2}-1}{m}, \frac{k_{2}+1}{m} \right] \times \dots \times \left[\frac{k_{n}-1}{m}, \frac{k_{n}+1}{m} \right]$$

for $k_1, k_2, \ldots, k_n \in \mathbb{Z}$. Then this countable collection of intervals covers \mathbb{R}^n . Consider the collection of all such intervals lying within O:

$$R^{(m)} = \{ I^{(m)}_{k_1,k_2,...,k_n} \mid I^{(m)}_{k_1,k_2,...,k_n} \subset O \text{ where } k_1,k_2,\ldots,k_n \in \mathbb{N} \}.$$

Then $R^{(m)}$ is countable for each $m \in \mathbb{Z}$.

()

Theorem II.1.4 (continued)

Theorem II.1.4. Every open and every closed set in the Euclidean space \mathbb{R}^n is a Borel set.

Proof (continued). Now if $x \in O$ then there is an ε -neighborhood of x contained in O (using the Euclidean metric on \mathbb{R}^n to define such a neighborhood) and so for *m* sufficiently large (namely, $m > 2n/\varepsilon$) there is an interval $I_{k_1,k_2,...,k_n}^{(m)}$ containing x and lying in the ε neighborhood. Now let A be the union of the intervals in the $\mathbb{R}^{(m)}$, $A = \bigcup_{m \in \mathbb{Z}, I \in R^{(m)}} I$. Since each element of each $R^{(m)}$ is a subset of O, then $A \subset O$. Since each $x \in O$ is in some element of some $R^{(m)}$ then $O \subset A$. So O = A and O is a countable union of intervals. Since the Borel sets are in the σ algebra generated by \mathcal{I}^n , then O is a Borel set. Since any closed set C has an open complement and a σ algebra is closed under complements, then each closed set in \mathbb{R}^n is also Borel.

Theorem II.1.4 (continued)

Theorem II.1.4. Every open and every closed set in the Euclidean space \mathbb{R}^n is a Borel set.

Proof (continued). Now if $x \in O$ then there is an ε -neighborhood of x contained in O (using the Euclidean metric on \mathbb{R}^n to define such a neighborhood) and so for m sufficiently large (namely, $m > 2n/\varepsilon$) there is an interval $I_{k_1,k_2,...,k_n}^{(m)}$ containing x and lying in the ε neighborhood. Now let A be the union of the intervals in the $\mathbb{R}^{(m)}$, $A = \cup_{m \in \mathbb{Z}, I \in R^{(m)}} I$. Since each element of each $R^{(m)}$ is a subset of O, then $A \subset O$. Since each $x \in O$ is in some element of some $R^{(m)}$ then $O \subset A$. So O = A and O is a countable union of intervals. Since the Borel sets are in the σ algebra generated by \mathscr{I}^n , then O is a Borel set. Since any closed set C has an open complement and a σ algebra is closed under complements, then each closed set in \mathbb{R}^n is also Borel.

Theorem II.1.6. Every Boolean σ algebra is a monotone class, and every Boolean algebra which is a monotone class is a Boolean algebra.

Proof. (a) If \mathscr{A}_{σ} is a Boolean σ algebra and $R_1, R_2, \ldots \in \mathscr{A}_{\sigma}$ is monotonically increasing then $\lim_{k\to\infty} R_k = \sup_{k=1}^{\infty} R_k \in \mathscr{A}_{\sigma}$. In the case that S_1, S_2, \ldots is a monotonically decreasing sequence in \mathscr{A}_{σ} and so $\lim_{k\to\infty} (S_1 \setminus S_k) = \bigcup_{k=1}^{\infty} (S_1 \setminus S_k) \in \mathscr{A}_{\sigma}$, where by Lemmas II.1.1 and II.1.2,

 $\cup_{k=1}^{\infty}(S_1\setminus S_k)=\cup_{k=1}^{\infty}(S_1\cap S'_k)=S_1\cap\left(\cup_{k=1}^{\infty}S'_k\right)S_1\setminus\left(\cup_{k=1}^{\infty}S_k\right)'$

$$= S_1 \setminus \left(\cap_{k=1}^{\infty} S_k \right) = S_1 \setminus \lim_{k \to \infty} S_k.$$

Theorem II.1.6. Every Boolean σ algebra is a monotone class, and every Boolean algebra which is a monotone class is a Boolean algebra.

Proof. (a) If \mathscr{A}_{σ} is a Boolean σ algebra and $R_1, R_2, \ldots \in \mathscr{A}_{\sigma}$ is monotonically increasing then $\lim_{k\to\infty} R_k = \sup_{k=1}^{\infty} R_k \in \mathscr{A}_{\sigma}$. In the case that S_1, S_2, \ldots is a monotonically decreasing sequence in \mathscr{A}_{σ} and so $\lim_{k\to\infty} (S_1 \setminus S_k) = \bigcup_{k=1}^{\infty} (S_1 \setminus S_k) \in \mathscr{A}_{\sigma}$, where by Lemmas II.1.1 and II.1.2,

$$\cup_{k=1}^{\infty}(S_1\setminus S_k)=\cup_{k=1}^{\infty}(S_1\cap S'_k)=S_1\cap\left(\cup_{k=1}^{\infty}S'_k\right)S_1\setminus\left(\cup_{k=1}^{\infty}S_k\right)'$$

$$=S_1\setminus \left(\cap_{k=1}^\infty S_k\right)=S_1\setminus \lim_{k\to\infty}S_k.$$

So $S_1 \setminus \lim_{k \to \infty} S_k \in \mathscr{A}_{\sigma}$ and since \mathscr{A}_{σ} is closed under set differences (and S_1 contains S_2, S_3, \ldots) then $S_1 \setminus (S_1 \setminus \lim_{k \to \infty} S_k) = \lim_{k \to \infty} S_k \in \mathscr{A}_{\sigma}$. So \mathscr{A}_{σ} is a monotone class, as claimed.

Theorem II.1.6. Every Boolean σ algebra is a monotone class, and every Boolean algebra which is a monotone class is a Boolean algebra.

Proof. (a) If \mathscr{A}_{σ} is a Boolean σ algebra and $R_1, R_2, \ldots \in \mathscr{A}_{\sigma}$ is monotonically increasing then $\lim_{k\to\infty} R_k = \sup_{k=1}^{\infty} R_k \in \mathscr{A}_{\sigma}$. In the case that S_1, S_2, \ldots is a monotonically decreasing sequence in \mathscr{A}_{σ} and so $\lim_{k\to\infty} (S_1 \setminus S_k) = \bigcup_{k=1}^{\infty} (S_1 \setminus S_k) \in \mathscr{A}_{\sigma}$, where by Lemmas II.1.1 and II.1.2,

$$egin{aligned} &\cup_{k=1}^\infty(S_1\setminus S_k)=\cup_{k=1}^\infty(S_1\cap S_k')=S_1\cap \left(\cup_{k=1}^\infty S_k'
ight)S_1\setminus \left(\cup_{k=1}^\infty S_k
ight)'\ &=S_1\setminus \left(\cap_{k=1}^\infty S_k
ight)=S_1\setminus \lim_{k o\infty}S_k. \end{aligned}$$

So $S_1 \setminus \lim_{k \to \infty} S_k \in \mathscr{A}_{\sigma}$ and since \mathscr{A}_{σ} is closed under set differences (and S_1 contains S_2, S_3, \ldots) then $S_1 \setminus (S_1 \setminus \lim_{k \to \infty} S_k) = \lim_{k \to \infty} S_k \in \mathscr{A}_{\sigma}$. So \mathscr{A}_{σ} is a monotone class, as claimed.

Theorem II.1.6 (continued)

Theorem II.1.6. Every Boolean σ algebra is a monotone class, and every Boolean algebra which is a monotone class is a Boolean algebra.

Proof (continued). (b) If \mathscr{A} is a Boolean algebra and a monotone class and S_1, S_2, \ldots is an infinite sequence of sets from \mathscr{A} , then with $R_n = \sup_{k=1}^n S_k$, the sequence R_1, R_2, \ldots is a monotonically increasing sequence in \mathbb{A} . Since \mathscr{A} is a monotone class, then $\bigcup_{k=1}^{\infty} S_k = \bigcup_{k=1}^{\infty} R_k = \lim_{n \to \infty} R_n \in \mathscr{A}$. So \mathscr{A} is a Boolean algebra closed under countable unions and hence \mathscr{A} is a Boolean σ algebra, as claimed.

Theorem II.1.6 (continued)

Theorem II.1.6. Every Boolean σ algebra is a monotone class, and every Boolean algebra which is a monotone class is a Boolean algebra.

Proof (continued). (b) If \mathscr{A} is a Boolean algebra and a monotone class and S_1, S_2, \ldots is an infinite sequence of sets from \mathscr{A} , then with $R_n = \sup_{k=1}^n S_k$, the sequence R_1, R_2, \ldots is a monotonically increasing sequence in \mathbb{A} . Since \mathscr{A} is a monotone class, then $\bigcup_{k=1}^{\infty} S_k = \bigcup_{k=1}^{\infty} R_k = \lim_{n \to \infty} R_n \in \mathscr{A}$. So \mathscr{A} is a Boolean algebra closed under countable unions and hence \mathscr{A} is a Boolean σ algebra, as claimed.

Theorem II.1.7. If \mathscr{A} is a Boolean algebra and $\mathfrak{M}(\mathscr{A})$ is the monotone class generated by \mathscr{A} , then $\mathfrak{M}(\mathscr{A})$ is identical with the Boolean σ algebra $\mathscr{A}_{\sigma}(\mathscr{A})$ generated by the family \mathscr{A} of sets.

Proof. By Theorem II.1.6, $\mathscr{A}_{\sigma}(\mathscr{A})$ is a monotone class and by definition $\mathfrak{M}(\mathscr{A})$ is the smallest monotone class containing \mathscr{A} , so $\mathfrak{M}(\mathscr{A}) \subset \mathscr{A}_{\sigma}(\mathscr{A})$. We will show that $\mathfrak{M}(\mathscr{A})$ is a Boolean σ algebra containing \mathscr{A} . Since $\mathscr{A}_{\sigma}(\mathscr{A})$ is the smallest σ algebra containing \mathscr{A} , then this will imply $\mathscr{A}_{\sigma}(\mathscr{A}) \subset \mathfrak{M}(\mathscr{A})$ and hence $\mathscr{A}_{\sigma}(\mathscr{A}) = \mathfrak{M}(\mathscr{A})$.

Theorem II.1.7. If \mathscr{A} is a Boolean algebra and $\mathfrak{M}(\mathscr{A})$ is the monotone class generated by \mathscr{A} , then $\mathfrak{M}(\mathscr{A})$ is identical with the Boolean σ algebra $\mathscr{A}_{\sigma}(\mathscr{A})$ generated by the family \mathscr{A} of sets.

Proof. By Theorem II.1.6, $\mathscr{A}_{\sigma}(\mathscr{A})$ is a monotone class and by definition $\mathfrak{M}(\mathscr{A})$ is the smallest monotone class containing \mathscr{A} , so $\mathfrak{M}(\mathscr{A}) \subset \mathscr{A}_{\sigma}(\mathscr{A})$. We will show that $\mathfrak{M}(\mathscr{A})$ is a Boolean σ algebra containing \mathscr{A} . Since $\mathscr{A}_{\sigma}(\mathscr{A})$ is the smallest σ algebra containing \mathscr{A} , then this will imply $\mathscr{A}_{\sigma}(\mathscr{A}) \subset \mathfrak{M}(\mathscr{A})$ and hence $\mathscr{A}_{\sigma}(\mathscr{A}) = \mathfrak{M}(\mathscr{A})$.

For $R \in \mathfrak{M}(\mathscr{A})$, denote by $\mathfrak{N}(R)$ the family of sets $S \in \mathfrak{M}(\mathscr{A})$ such that $S', R \cup S \in \mathfrak{M}(\mathscr{A})$. So by definition, $\mathfrak{N}(\mathscr{A}) \subset \mathfrak{M}(\mathscr{A})$. If $S_1, S_2, \ldots \in \mathfrak{N}(R)$ is a monotone sequence then, since $\mathfrak{M}(\mathscr{A})$ is a monotone class, by Exercise II.1.6 $(\lim_{n\to\infty} S_n)^n = \lim_{n\to\infty} S'_n \in \mathfrak{M}(\mathscr{A})$, and the sequence of sets $R \cup S_1, R \cup S_2, \ldots \in \mathfrak{M}(\mathscr{A})$ is also a monotone sequence and, again by Exercise II.1.6,

 $(\lim_{n\to\infty} S_n) \cup R = \lim_{n\to\infty} (S_n \cup R) \in \mathfrak{M}(\mathscr{A})$. So, by the definition of $\mathfrak{N}(R)$, $\lim_{n\to\infty} S_n \in \mathfrak{N}(R)$ and so $\mathfrak{N}(R)$ is a monotone class.

Theorem II.1.7. If \mathscr{A} is a Boolean algebra and $\mathfrak{M}(\mathscr{A})$ is the monotone class generated by \mathscr{A} , then $\mathfrak{M}(\mathscr{A})$ is identical with the Boolean σ algebra $\mathscr{A}_{\sigma}(\mathscr{A})$ generated by the family \mathscr{A} of sets.

Proof. By Theorem II.1.6, $\mathscr{A}_{\sigma}(\mathscr{A})$ is a monotone class and by definition $\mathfrak{M}(\mathscr{A})$ is the smallest monotone class containing \mathscr{A} , so $\mathfrak{M}(\mathscr{A}) \subset \mathscr{A}_{\sigma}(\mathscr{A})$. We will show that $\mathfrak{M}(\mathscr{A})$ is a Boolean σ algebra containing \mathscr{A} . Since $\mathscr{A}_{\sigma}(\mathscr{A})$ is the smallest σ algebra containing \mathscr{A} , then this will imply $\mathscr{A}_{\sigma}(\mathscr{A}) \subset \mathfrak{M}(\mathscr{A})$ and hence $\mathscr{A}_{\sigma}(\mathscr{A}) = \mathfrak{M}(\mathscr{A})$. For $R \in \mathfrak{M}(\mathscr{A})$, denote by $\mathfrak{N}(R)$ the family of sets $S \in \mathfrak{M}(\mathscr{A})$ such that $S', R \cup S \in \mathfrak{M}(\mathscr{A})$. So by definition, $\mathfrak{N}(\mathscr{A}) \subset \mathfrak{M}(\mathscr{A})$. If $S_1, S_2, \ldots \in \mathfrak{N}(R)$ is a monotone sequence then, since $\mathfrak{M}(\mathscr{A})$ is a monotone class, by Exercise II.1.6 $(\lim_{n\to\infty} S_n)^n = \lim_{n\to\infty} S'_n \in \mathfrak{M}(\mathscr{A}),$ and the sequence of sets $R \cup S_1, R \cup S_2, \ldots \in \mathfrak{M}(\mathscr{A})$ is also a monotone sequence and, again by Exercise II.1.6,

 $(\lim_{n\to\infty} S_n) \cup R = \lim_{n\to\infty} (S_n \cup R) \in \mathfrak{M}(\mathscr{A})$. So, by the definition of $\mathfrak{N}(R)$, $\lim_{n\to\infty} S_n \in \mathfrak{N}(R)$ and so $\mathfrak{N}(R)$ is a monotone class.

()

Theorem II.1.7 (continued 1)

Proof (continued). In addition, if $R \in \mathscr{A}$ then $\mathfrak{N}(R)$ is not empty because it contains \mathscr{A} , since \mathscr{A} is a Boolean algebra. In this case, $\mathfrak{N}(R)$ is a monotone class containing \mathscr{A} ad hence $\mathfrak{M}(\mathscr{A}) \subset \mathfrak{N}(R)$. Therefore $\mathfrak{N}(R) = \mathfrak{M}(\mathscr{A})$ for $R \in \mathscr{A}$. Since \mathscr{A} is a Boolean algebra of sets then $\mathscr{X} = \mathfrak{M}(\mathscr{A})$. By the definition of $\mathfrak{N}(\mathscr{X})$, for every $S \in \mathfrak{N}(\mathscr{X}) = \mathfrak{M}(\mathscr{A})$ we have $S' \in \mathfrak{M}(\mathscr{A})$ so that $\mathfrak{M}(\mathscr{A})$ is closed under complements.

Furthermore, if $R \in \mathscr{A}$, then for an arbitrary $S \in \mathfrak{M}(\mathscr{A})$ we have $S \in \mathfrak{N}(R) = \mathfrak{M}(\mathscr{A})$, i.e., $R \cup S \in \mathfrak{M}(\mathscr{A})$; consequently (by the definition of $\mathfrak{N}(S)$), $R \in \mathfrak{N}(S)$. Therefore $\mathscr{A} \subset \mathfrak{N}(S)$. As shown above, $\mathfrak{N}(S)$ is a monotone class and, since it contains \mathscr{A} , we have $\mathfrak{M}(\mathscr{A}) \subset \mathfrak{N}(S)$. Since $\mathfrak{N}(S) \subset \mathfrak{M}(\mathscr{A})$ by definition, then $\mathfrak{N}(S) = \mathfrak{M}(\mathscr{A})$ where S is any set in $\mathfrak{M}(\mathscr{A})$. So for any $R, S \in \mathfrak{N}(S) = \mathfrak{M}(\mathscr{A})$ we have (by the definition of $\mathfrak{N}(S)$) that $R \cup S, R' \in \mathfrak{N}(S) = \mathfrak{M}(\mathscr{A})$. Therefore, $\mathfrak{M}(\mathscr{A})$ is a Boolean algebra.

Theorem II.1.7 (continued 1)

Proof (continued). In addition, if $R \in \mathscr{A}$ then $\mathfrak{N}(R)$ is not empty because it contains \mathscr{A} , since \mathscr{A} is a Boolean algebra. In this case, $\mathfrak{N}(R)$ is a monotone class containing \mathscr{A} ad hence $\mathfrak{M}(\mathscr{A}) \subset \mathfrak{N}(R)$. Therefore $\mathfrak{N}(R) = \mathfrak{M}(\mathscr{A})$ for $R \in \mathscr{A}$. Since \mathscr{A} is a Boolean algebra of sets then $\mathscr{X} = \mathfrak{M}(\mathscr{A})$. By the definition of $\mathfrak{N}(\mathscr{X})$, for every $S \in \mathfrak{N}(\mathscr{X}) = \mathfrak{M}(\mathscr{A})$ we have $S' \in \mathfrak{M}(\mathscr{A})$ so that $\mathfrak{M}(\mathscr{A})$ is closed under complements.

Furthermore, if $R \in \mathscr{A}$, then for an arbitrary $S \in \mathfrak{M}(\mathscr{A})$ we have $S \in \mathfrak{N}(R) = \mathfrak{M}(\mathscr{A})$, i.e., $R \cup S \in \mathfrak{M}(\mathscr{A})$; consequently (by the definition of $\mathfrak{N}(S)$), $R \in \mathfrak{N}(S)$. Therefore $\mathscr{A} \subset \mathfrak{N}(S)$. As shown above, $\mathfrak{N}(S)$ is a monotone class and, since it contains \mathscr{A} , we have $\mathfrak{M}(\mathscr{A}) \subset \mathfrak{N}(S)$. Since $\mathfrak{N}(S) \subset \mathfrak{M}(\mathscr{A})$ by definition, then $\mathfrak{N}(S) = \mathfrak{M}(\mathscr{A})$ where S is any set in $\mathfrak{M}(\mathscr{A})$. So for any $R, S \in \mathfrak{N}(S) = \mathfrak{M}(\mathscr{A})$ we have (by the definition of $\mathfrak{N}(S)$) that $R \cup S, R' \in \mathfrak{N}(S) = \mathfrak{M}(\mathscr{A})$. Therefore, $\mathfrak{M}(\mathscr{A})$ is a Boolean algebra.

Theorem II.1.7 (continued 2)

Theorem II.1.7. If \mathscr{A} is a Boolean algebra and $\mathfrak{M}(\mathscr{A})$ is the monotone class generated by \mathscr{A} , then $\mathfrak{M}(\mathscr{A})$ is identical with the Boolean σ algebra $\mathscr{A}_{\sigma}(\mathscr{A})$ generated by the family \mathscr{A} of sets.

Proof (continued). Since $\mathfrak{M}(\mathscr{A})$ is a Boolean algebra which is a monotone class then, by Theorem II.1.6, $\mathfrak{M}(\mathscr{A})$ is a Boolean σ algebra. The result now follows, as explained above.