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Lemma II.1.1

Lemma II.1.1

Lemma II.1.1. If F is a family of sets and R is any given set, then

R ∩ (∪S∈F S) = ∪S∈F (R ∩ S).

Proof. If ξ ∈ R ∩ (∪S∈F S) then ξ ∈ R and ξ ∈ ∪S∈F S . That is, ξ ∈ T
for some T ∈ F . Then ξ ∈ R ∩T where T ∈ F and so ξ ∈ ∪S∈F (R ∩S).

Conversely, if η ∈ ∪S∈F (R ∩ S), then η ∈ R ∩ T for some T ∈ F . The
η ∈ R and η ∈ T where T ∈ F . Then η ∈ R and η ∈ T , so that
η ∈ ∪S∈F S . Therefore η ∈ R ∩ (∪S∈F S).

Hence R ∩ (∪S∈F S) = ∪S∈F (R ∩ S), as claimed.
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Lemma II.1.2

Lemma II.1.2. DeMorgan’s Laws

Lemma II.1.2. DeMorgan’s Laws.
If F is a family of subsets of a set X , and if for any given set S we
denote by S ′ = X \ S the complement of S with respect to X , then

(∪S∈F S)′ = ∩S∈F S ′ and (∩S∈F S)′ = ∪S∈F S ′.

Proof. To establish the first claim, let ξ ∈ (∪S∈F S)′. Then ξ 6∈ ∪S∈F S
and so ξ 6∈ S for all S ∈ F . That is, ξ ∈ S ′ for all S ∈ F and so
ξ ∈ ∩S∈F S ′. Hence (∪S∈F S)′ ⊂ ∩S∈F S ′.

Conversely, if η ∈ ∩S∈F S ′ then η ∈ S ′ for all S ∈ F . That is, η 6∈ S for
all S ∈ F . Therefore η 6∈ ∪S∈F S and so η ∈ (∪S∈F S)′. Hence
∩S∈F S ′ ⊂ (∪S∈F S)′ and so (∪S∈F S)′ = ∩S∈F S ′, as claimed.
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Lemma II.1.2

Lemma II.1.2 (continued)

Lemma II.1.2. DeMorgan’s Laws.
If F is a family of subsets of a set X , and if for any given set S we
denote by S ′ = X \ S the complement of S with respect to X , then

(∪S∈F S)′ = ∩S∈F S ′ and (∩S∈F S)′ = ∪S∈F S ′.

Proof (continued). We can take a short cut to prove the second claim.
Define F ′ = {S ′ | S ∈ F}. Then applying the first claim to family F ′ we
have (∪S ′∈F ′S ′)′ = ∩S ′∈F ′S ′ and taking complements of both sides((

∪S ′∈F ′S ′
)′)′

=
(
∩S ′∈F ′S ′

)′
or ∪S ′∈F ′ S ′ =

(
∩S ′∈F ′S ′

)′
(since (R ′)′ = R ′′ = R for any set R). Replacing S ′ with S (and F with
F ) gives ∪S∈F S = (∩S∈F S)′, as claimed.
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Theorem II.1.1

Theorem II.1.1

Theorem II.1.1. If the class K of subsets of a set X is a Boolean
algebra, then

(a) the entire set X and the empty set ∅ belong to K ,

(b) the intersection R ∩ S belongs to K whenever R,S ∈ K ,
and

(c) the difference R \ S and symmetric difference
R4S = (R \S)∪ (S \R) belongs to K whenever R,S ∈ K .

Proof. 1. If R ⊂ X and R ∈ K , then R ′ ∈ K and so
R ∪ R ′ = X ∈ K , as claimed. Then X ′ = ∅ ∈ K , as claimed.

2. For R,S ∈ K we have R ∪ S ∈ K and (R ∪ S)′ = R ′ ∩ S ′ ∈ K (by
Lemma II.1.1), as claimed.
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Theorem II.1.1

Theorem II.1.1 (continued)

Theorem II.1.1. If the class K of subsets of a set X is a Boolean
algebra, then

(a) the entire set X and the empty set ∅ belong to K ,

(b) the intersection R ∩ S belongs to K whenever R,S ∈ K ,
and

(c) the difference R \ S and symmetric difference
R4S = (R \S)∪ (S \R) belongs to K whenever R,S ∈ K .

Proof (continued). 3. For R,S ∈ K we have

R \ S = R ∩ S ′

= (R ′ ∪ S ′′)′ by Lemma II.1.2

= (R ′ ∪ S)′

∈ K since K is a Boolean algebra.

Similarly, S \ R ∈ K . Hence R4S = (R \ S) ∪ (S \ R) ∈ K , as
claimed.
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Theorem II.1.2

Theorem II.1.2

Theorem II.1.2. For any given nonempty family F of subset of a set X
there is a unique smallest Boolean algebra A (F ) and a unique smallest
Boolean σ algebra Aσ(F ) containing F . That is, if A is a Boolean
algebra containing F then A (F ) ⊂ A and if Aσ is a Boolean algebra
containing F then Aσ(F ) ⊂ Aσ. A (F ) and Aσ(F ) are called,
respectively, the Boolean algebra and the Boolean σ algebra generated by
the family F .

Proof. Denote by F the family of all Boolean algebras A containing F .
F is not empty because it contains the power set SX of all subsets of X .
Consider the family A (F ) = ∩S∈FS. Now A (F ) is nonempty since
F ⊂ A (F ).

If R,S ∈ A (F ) then R,S ∈ S for all S ∈ F and since each
G is an algebra then R ∪ S ∈ S and R ′ = X \ R ∈ S for all S ∈ G.
Therefore R ∪ S ∈ A (F ), R ′ ∈ A (F ), and A (F ∈ F. If A is any
Boolean algebra containing F then A ∈ F and so A (F ) ⊂ A ; that is,
A (F ) is a smallest Boolean algebra containing F , as claimed.
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Theorem II.1.2

Theorem II.1.2 (continued)

Theorem II.1.2. For any given nonempty family F of subset of a set X
there is a unique smallest Boolean algebra A (F ) and a unique smallest
Boolean σ algebra Aσ(F ) containing F . That is, if A is a Boolean
algebra containing F then A (F ) ⊂ A and if Aσ is a Boolean algebra
containing F then Aσ(F ) ⊂ Aσ. A (F ) and Aσ(F ) are called,
respectively, the Boolean algebra and the Boolean σ algebra generated by
the family F .

Proof (continued). For uniqueness, if A1(F ) and A2(F ) are two such
algebras, then A1(F ) ⊂ A2(F ) since A1(F ) is a smallest algebra and
A2(F ) ⊂ A1(F ) since A2(F ) is a smallest algebra. So
A1(F ) = A2(F ) and the smallest such algebra is unique.

The proof for a smallest Boolean σ algebra is similar.
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Theorem II.1.3

Theorem II.1.3

Theorem II.1.3. The family Bn
0 of all finite unions

I1 ∪ I2 ∪ · · · ∪ Ik where I1, I2, . . . , In ∈ I n and k ∈ N

of intervals in I n is identical to the Boolean algebra A (I n).

Proof. Since a Boolean algebra is closed under finite unions, then
Bn

0 ⊂ A (I n). Now if we show that Bn
0 is a Boolean algebra then we

must have A (I n) ⊂ Bn
0 (since A (I n) is the smallest Boolean algebra

containing I n) and hence Bn
0 = A (I n). If R,S ∈ Bn

0 then
R = I1 ∪ I2 ∪ · · · ∪ Ik and S = J1 ∪ J2 ∪ · · · ∪ J` for some
I1, I2, . . . , Ik , J1, J2, . . . , J` ∈ Bn

0 .

To prove R ′ ∈ Bn
0 , we proceed by induction on k where

R = I1 ∪ I2 ∪ · · · ∪ Ik . In the case k = 1 we have R = I1 is an interval. In
Exercise II.1.A it is to be shown that I ′1 = I (1) ∪ I (2) ∪ · · · ∪ I (v) where
I (1), I (2), . . . , I (v) ∈ I n and v ≤ 2n3n−1. So R ′ ∈ Bn

0 and Bn
0 is closed

under complements of intervals.
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Theorem II.1.3

Theorem II.1.3 (continued 1)

Proof (continued). Suppose R ′ ∈ Bn
0 for all R = I1 ∪ I2 ∪ · · · ∪ Ik for

intervals I1, I2, . . . , Ik ∈ I n. Then

R ′ = (I1 ∪ I2 ∪ · · · ∪ Ik)′ = ∪p
m=1Jm (1.5)

for some p ∈ N and J1, J2, . . . , Jp ∈ I n (since the result holds for k = 1
instead), and we have

(I1 ∪ I2 ∪ · · · ∪ Ik+1)
′

= (I1 ∪ I2 ∪ · · · ∪ Ik)′ ∩ Ik+1 by Lemma II.1.2

=
(
∪p

m=1Jm

)
∩ (J(1) ∪ J(2) ∪ · · · ∪ J(v)) by (1.5)

=
((
∪p

m=1Jm

)
∩ J(1)

)
∪

((
∪p

m=1Jm

)
∩ J(2)

)
∪ · · · ∪

((
∪p

m=1Jm

)
∩ J(v)

)
by Lemma II.1.1

=
(
∪p

m=1Jm ∩ J(1)
)
∪

(
∪p

m=1Jm ∩ J(2)
)
∪ · · · ∪

(
∪p

m=1Jm ∩ J(v)
)

by Lemma II.1.1.
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Theorem II.1.3

Theorem II.1.3 (continued 2)

Theorem II.1.3. The family Bn
0 of all finite unions

I1 ∪ I2 ∪ · · · ∪ Ik where I1, I2, . . . , In ∈ I n and k ∈ N

of intervals in I n is identical to the Boolean algebra A (I n).

Proof (continued). Now an intersection of two elements of I n is an
element of I n, so Jm ∩ J(1), Jm ∩ J(2), . . . , Jm ∩ J(v) ∈ I n and so
R ′ = (I1 ∪ I2 ∪ · · · ∪ Ik+1) ∈ Bn

0 and so by Mathematical Induction Bn
0 is

closed under complements. Therefore Bn
0 is a Boolean algebra and the

claim holds, as explained above.
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Theorem II.1.4

Theorem II.1.4

Theorem II.1.4. Every open and every closed set in the Euclidean space
Rn is a Borel set.

Proof. Assume O is an open set in Rn. For each m ∈ N consider the open
intervals in Rn

I
(m)
k1,k2,...,kn

=

{
x = (x1, x2, . . . , xn)

∣∣∣∣k1 − 1

m
< x1 <

k1 + 1

m
,

k2 − 1

m
< x2 <

k2 + 1

m
, . . . ,

kn − 1

m
< xn <

kn + 1

m

}
=

[
k1 − 1

m
,
k1 + 1

m

]
×

[
k2 − 1

m
,
k2 + 1

m

]
× · · · ×

[
kn − 1

m
,
kn + 1

m

]
for k1, k2, . . . , kn ∈ Z. Then this countable collection of intervals covers
Rn. Consider the collection of all such intervals lying within O:

R(m) = {I (m)
k1,k2,...,kn

| I (m)
k1,k2,...,kn

⊂ O where k1, k2, . . . , kn ∈ N}.

Then R(m) is countable for each m ∈ Z.
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k1,k2,...,kn

| I (m)
k1,k2,...,kn

⊂ O where k1, k2, . . . , kn ∈ N}.

Then R(m) is countable for each m ∈ Z.
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Theorem II.1.4

Theorem II.1.4 (continued)

Theorem II.1.4. Every open and every closed set in the Euclidean space
Rn is a Borel set.

Proof (continued). Now if x ∈ O then there is an ε-neighborhood of x
contained in O (using the Euclidean metric on Rn to define such a
neighborhood) and so for m sufficiently large (namely, m > 2n/ε) there is

an interval I
(m)
k1,k2,...,kn

containing x and lying in the ε neighborhood. Now

let A be the union of the intervals in the R(m), A = ∪m∈Z,I∈R(m) I . Since

each element of each R(m) is a subset of O, then A ⊂ O. Since each
x ∈ O is in some element of some R(m) then O ⊂ A. So O = A and O is
a countable union of intervals. Since the Borel sets are in the σ algebra
generated by I n, then O is a Borel set. Since any closed set C has an
open complement and a σ algebra is closed under complements, then each
closed set in Rn is also Borel.
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Theorem II.1.6

Theorem II.1.6

Theorem II.1.6. Every Boolean σ algebra is a monotone class, and every
Boolean algebra which is a monotone class is a Boolean algebra.

Proof. (a) If Aσ is a Boolean σ algebra and R1,R2, . . . ∈ Aσ is
monotonically increasing then limk→∞ Rk = sup∞k=1 Rk ∈ Aσ. In the case
that S1,S2, . . . is a monotonically decreasing sequence in Aσ and so
limk→∞(S1 \ Sk) = ∪∞k=1(S1 \ Sk) ∈ Aσ, where by Lemmas II.1.1 and
II.1.2,

∪∞k=1(S1 \ Sk) = ∪∞k=1(S1 ∩ S ′k) = S1 ∩
(
∪∞k=1S

′
k

)
S1 \ (∪∞k=1Sk)′

= S1 \ (∩∞k=1Sk) = S1 \ lim
k→∞

Sk .

So S1 \ limk→∞ Sk ∈ Aσ and since Aσ is closed under set differences (and
S1 contains S2,S3, . . .) then S1 \ (S1 \ limk→∞ Sk) = limk→∞ Sk ∈ Aσ. So
Aσ is a monotone class, as claimed.
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Theorem II.1.6

Theorem II.1.6 (continued)

Theorem II.1.6. Every Boolean σ algebra is a monotone class, and every
Boolean algebra which is a monotone class is a Boolean algebra.

Proof (continued). (b) If A is a Boolean algebra and a monotone class
and S1,S2, . . . is an infinite sequence of sets from A , then with
Rn = supn

k=1 Sk , the sequence R1,R2, . . . is a monotonically increasing
sequence in A. Since A is a monotone class, then
∪∞k=1Sk = ∪∞k=1Rk = limn→∞ Rn ∈ A . So A is a Boolean algebra closed
under countable unions and hence A is a Boolean σ algebra, as
claimed.
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Theorem II.1.7

Theorem II.1.7

Theorem II.1.7. If A is a Boolean algebra and M(A ) is the monotone
class generated by A , then M(A ) is identical with the Boolean σ algebra
Aσ(A ) generated by the family A of sets.

Proof. By Theorem II.1.6, Aσ(A ) is a monotone class and by definition
M(A ) is the smallest monotone class containing A , so M(A ) ⊂ Aσ(A ).
We will show that M(A ) is a Boolean σ algebra containing A . Since
Aσ(A ) is the smallest σ algebra containing A , then this will imply
Aσ(A ) ⊂ M(A ) and hence Aσ(A ) = M(A ).

For R ∈ M(A ), denote by N(R) the family of sets S ∈ M(A ) such that
S ′,R ∪ S ∈ M(A ). So by definition, N(A ) ⊂ M(A ). If
S1,S2, . . . ∈ N(R) is a monotone sequence then, since M(A ) is a
monotone class, by Exercise II.1.6 (limn→∞ Sn)

n = limn→∞ S ′n ∈ M(A ),
and the sequence of sets R ∪ S1,R ∪ S2, . . . ∈ M(A ) is also a monotone
sequence and, again by Exercise II.1.6,
(limn→∞ Sn) ∪ R = limn→∞(Sn ∪ R) ∈ M(A ). So, by the definition of
N(R), limn→∞ Sn ∈ N(R) and so N(R) is a monotone class.
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Theorem II.1.7

Theorem II.1.7 (continued 1)

Proof (continued). In addition, if R ∈ A then N(R) is not empty
because it contains A , since A is a Boolean algebra. In this case, N(R) is
a monotone class containing A ad hence M(A ) ⊂ N(R). Therefore
N(R) = M(A ) for R ∈ A . Since A is a Boolean algebra of sets then
X = M(A ). By the definition of N(X ), for every S ∈ N(X ) = M(A )
we have S ′ ∈ M(A ) so that M(A ) is closed under complements.

Furthermore, if R ∈ A , then for an arbitrary S ∈ M(A ) we have
S ∈ N(R) = M(A ), i.e., R ∪ S ∈ M(A ); consequently (by the definition
of N(S)), R ∈ N(S). Therefore A ⊂ N(S). As shown above, N(S) is a
monotone class and, since it contains A , we have M(A ) ⊂ N(S). Since
N(S) ⊂ M(A ) by definition, then N(S) = M(A ) where S is any set in
M(A ). So for any R,S ∈ N(S) = M(A ) we have (by the definition of
N(S)) that R ∪ S ,R ′ ∈ N(S) = M(A ). Therefore, M(A ) is a Boolean
algebra.
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Theorem II.1.7

Theorem II.1.7 (continued 2)

Theorem II.1.7. If A is a Boolean algebra and M(A ) is the monotone
class generated by A , then M(A ) is identical with the Boolean σ algebra
Aσ(A ) generated by the family A of sets.

Proof (continued). Since M(A ) is a Boolean algebra which is a
monotone class then, by Theorem II.1.6, M(A ) is a Boolean σ algebra.
The result now follows, as explained above.
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