Modern Algebra

Chapter Il. Measure Theory and Hilbert Spaces of Functions
I1.2. Measures and Measure Spaces—Proofs of Theorems

L Theoreml21 |
Theorem 11.2.1 (continued 1)

Proof (continued).

k
= Jim (; MGAY Rn_l))
= kli_\m:)C i (Uﬁ:l(R,, \ T,,_l)) since a measure is finite additive
= kli_’mx 11(Ry) since UX_; (R \ Ta-1) = Rx
because Ry, R», ... is increasing.

So i is continuous from below.

Suppose 51, 52,... € &7 is a monotonically decreasing sequence and
p(Sng) < oo for some ng. Then S, \ S1. Sy \ S2, - .. is monotonically
increasing, so if limy_, .. Sk € & then ...

Theorem 11.2.1

Theorem 11.2.1. Every measure is continuous from above and below.

Proof. Suppose Ry, R», ... is a monotonically increasing sequence from
measure space (2, 27, 1) and limy_. Rk € 7. Then by defining Ry = @
we have

k“—>m:>c- R, = U?}:I Ry = U?:l(Rk \ Rg(_l)._
Rk \ Rxk—1 € o for k =1,2,... by Theorem 11.1.1(c), and the sets

Rk \ Rk—1 are pairwise disjoint. So

p:( lim Rk) = pu(UsZ1(Rk \ Rk-1))

n—oo

oo
= Z,{L(Rk \ Rx—1) since a measure is countably additive
k=1

k
= lim (Zﬂ-(Rn\Rn—l))

—00
n=1
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Theorem 11.2.1 (continued 2)

Proof (continued).

fim (S \5) = UEy(Sm\ S) = UE4(Sm 1 55)
= SppN(Up=1SF) by Lemma Il.1.1
= Spy N(NFZ1Sk)° by Lemma 11.1.2 (De Morgan)
= Sp N (kli_.mx Sk) — S \ k]i—,ngc Sk

and by the first part of the proof (continuity from below)

1 (limg—oo(Sng \ Sk)) = limk—oo 11(Sny \ Sk)- Since
1(Sno \ Sk) = 11(Sny) — 11(Sk) for k > ng by the “Excision Principle”
(Exercise 11.2.1(ii); this is where 1i(S,,) < oo is needed) we have

1 (Sno \ kli_)mx. Sk) = 1(S5ny) — 1 (lemx Sk) = 1 Spy) = kIme w(Sk). ()
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Theorem 11.2.1 (continued 3)

Theorem 11.2.1. Every measure is continuous from above and below.

Proof (continued). Therefore

u(im 5c) = (w0 (5w im 5:))

since the sequence is decreasing

= w(Sn,) — 1 (Sno \ lim 5;()
k—o0
by the Excision Principle (Exercise 11.2.1(ii))
= lim pu(Sk) by (*).
k—o00
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Theorem 11.2.2 (continued)

Theorem 11.2.2. Every finite, nonnegative, additive set function F on a
Boolean o algebra A and satisfying F(@) = 0, which is either continuous
from below at every R € A or continuous from above at @ € A, is
necessarily also o additive or “countably additive” (i.e., ;1 is a measure).

Proof (continued). If F is continuous form above at & then, since
R\ Ri,R\ Ra,... is increasing with

lim (R\ Ra) = lim (U724 Sk \ Uy k) = lim (52.,415) = 2,

n—oo

then we have

0=F(®)=F ( lim (R \ Rn)) = lim F(R\R,) = F(R) = lim F(R,).

n—oo n—oo
That is, F (W22 ,5) =

F(R) = limp_.oc F(Rn) = >4 F(Sk)- O
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Theorem 11.2.2

Theorem 11.2.2. Every finite, nonnegative, additive set function F on a
Boolean o algebra A and satisfying F(@) = 0, which is either continuous
from below at every R € A or continuous from above at @ € A, is
necessarily also o additive or “countably additive” (i.e., ;1 is a measure).

Proof. Let 51,5;,... be any infinite sequence of disjoint sets from 7.
Then the sequence Ry, R», ... with R, = UE:15k is monotonically
increasing. Since F is additive by hypothesis then

ZFSk

If F is continuous from below at R € &7 then

P (Jm, ) = i PR~ i, (3 F(50) = 3" (5.

So F is countably additive.

F(Rn) — Uk lsk

F (UkZ1Sk) =
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Lemma [I1.2.A

Lemma I1.2.A. Let &/ be a Boolean algebra on set 2" and let i be a
measure on «/. Define extended real-valued set function

i+ (R) = inf { S u(Sk)
k=1

on the power set ¥4 of 2. Sets 51, 5,.
are said to cover R. For any Ry, R»,.

R C U315k, Sk € o for all k € N}

. € &/ such that R C U2 S¢
. E ‘3’", we have

Zu*(R)

Proof. Let € > 0. For each R, there is a covering Sp1, Sp2, - -
that R, C UZZ;Spk and

Ju' n lR
. € & such

oo
(R < ut (R £
i (Rn) < ;ﬂ(snk) < (Ry) + on
by the infimum definition of ™.
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Lemma II.2.A (continued) Lemma [1.2.1

Lemma 11.2.1. If M is an outer measure on the power set ¥4 of 2" then
the class @7 of all M-measurable sets S € ¥4 is a Boolean ¢ algebra,

Proof (continued). Now {S,x | n, k € N} is a countable family of sets in and the outer measure M restricted to </} is a measure.

& and Up2 R, C Uszlsnk. SO Proof. First, we prove 7, is a Boolean algebra. For any R € ¥4 we have
o0 M(R)=MRNZ)=0+MRNZ)=MRN2)+ MRNZ)
+
p (UnZaRn) < Z (Snk) = Z Zu(sf"‘) and so @ € .@). Clearly if S is measurable and satisfies the Carathéodory
nk=1 n=1k=1 condition, then S’ satisfies the Carathéodory condition and is measurable;
00 . 0 that is, if S € @)y then S’ € @). Now let 51,5 € @y. Then for any
<Y (1R + ) =2+ Yot (Ra), R €y we have
k=1 n=1 M(R) = M(RNS;) + M(RNS)). (2.11)
Since & > 0 is arbitrary, the claim follows. H With RNS1,RNS] € 9y and the fact that S, is measurable then we have

M(RN S1) = M((RN S1) N S) + M((RN S1)N Sh)
and M(RN S)) = M((RN S})N S3) + M((RN S}) N Sb).
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Lemma 11.2.1 (continued 1) Lemma 11.2.1 (continued 2)

Proof (continued). Substituting these into (2.11) we get

M(R) = M(RNSiNS)+MRNSNS)+MRNS.NS) Proof (continued). ...by Lemma I.1.1,

+M(RNSINS)) (RN(51U%))NS NS =RNS1 NS since (51US)NS NS =5NS,,
= MRNSNS)+MRNS NS+ MRNSINS,)

+M(RN (5 US,)) by Lemma 11.1.2 (De Morgan) (2.14) (RN(51US))N5NS =RNSNS; since (U H)N5 N5 =505,
(

(RN(51US%))NSi NS =RNS NSy since (S1US)NS NS =51NS,,
Now this equation holds for all R € ¥4-. So by replacing R b .
Rﬂ(slﬂgz) we got 77 y replacing 1T by and (RN (S1US))N(S1US) = since (S1US) N (S1US,) = 2.

(
Replacing part of the right hand side of (2.14) with M(R N (51 U S2)") we
M(RN(51NS3)) = M((RN(51US)NS1NS)+M((RN(51US)NSINSS) get
FM((RN(S1US))NSLNSs) +M((RN(S1US2) N (S1USy)) M(R) = M(R (511 52)) + M(R (51U 52)')

forall R € 4y h p. Therefore @7 is a Bool I .
— M(ROS1NS)+M(RN SN SL) +M(RNS.AS) (2.15) or a € 9y, sothat S U S € )y erefore .«7), is a Boolean algebra

since. . .



Lemma 11.2.1 (continued 3) Lemma 11.2.1 (continued 4)

Proof (continued). To prove the .7 is a Boolean o algebra, we consider Proof (continued). Now U}_, Sk is M measurable since .« is a Boolean
a sequence of sets 51, 5y, ... € &),. We can assume without loss of algebra, so by the Carathéodory splitting condition

generality that the sets are disjoint (or we can use the Boolean algebra M(R) = M(RN(W_1S0)+M (RN (UE=151<)’)

properties to create a disjoint sequence from a non-disjoint sequence).
With S; and S, disjoint we have S1 NS, = S5 and S{ N S, = S so that
2.15) b ‘
(2.15) becomes > STM(RNS) +M (RO (U72,50)) by (2.17) and (2.18).
M(RN(S51US)) = M(RNS1)+ M(RNS,) k=1
Since this holds for arbitrary n € N then

= M(Up_1(RNS))+ M (RN (Wi—15«)") by Lemma Il.1.1

and inductively we have

M(Rﬂ(uﬁilsk)):iﬂ/f(f?nsk). (2.17) M(R) > > M(RNS)+M(RN(RLSK)) . (%)
k=1 k=1

Since M is an outer measure and so monotone (by subadditivity and As an outer measure M is countably subadditive,

nonnegativity) we have i
gativity) M (RO (U2150) = M (U4 (RNS)) < S M(RNSy).
k=1

M (RN (WE—15)") = M (RN (WRZ15)) - (2.18)
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Lemma 11.2.1 (continued 5) Lemma 11.2.2
Proof (continued). So from this and (*) we have Lemma 11.2.2. Every set R in the Boolean ¢ algebra <7, = @/, (<)
o0 generated by o7 is " measurable. That is, o7, C &7,
- ’
M(R) = Z M(R N Sk) + M (RN (U321 5)) Proof. Let R € ¥4 . By the infimum definition of u*, for any £ > 0 there
k=1 is sequence 51,5y, ... € &/ such that R C U2, S and
> M (RN (U32,5)) + M (RN (U321 Sk)) - o
By subadditivity, pH(R) <> p(Sk) < u*(R) +¢ (2.23)
k=1

M(R) = M ((RN (W3Z1Sk)) U (RN (W, Sk)
(R) (( (URZaSk) U ( (UiZ15k)) (here, ju is a measure on &/ that defines outer measure p*). For any

< M (RN (215)) + M (RN (U521 5¢)) , S € o/ we have (since S = (Sk N S)WJ(ScNS’) and p is a measure on .o/
hence M(R) = M (RN (W32,5k)) + M (RN (W32, Sk)') for all R € 4y so and hence countable additivity),
that U2, Sk is M measurable. That is, U2, 5, € @/ and so @y is a i~
Boolean ¢ algebra. Z 1w(Sk) = Z u((SkNS)u (SknS)) = Z(,U-(Sk NS)+u(SknS’)
Finally, to prove that M is o additive on @y (and hence is a measure on k=1 k=1
), take R = W22, Sy is (2,21) to get M (W32, Sn) = D77 1(Sk). %
Countable additivity shows the reverse of this inequality and hence M is o Z Sk NS) + Z p(SkNS") > (RNS)+pu*(RNS') (2.24)
additive. O k=1
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Lemma 11.2.2 (continued)

Lemma 11.2.2. Every set R in the Boolean ¢ algebra <7, = .o/,(<7)
generated by &/ is 1" measurable. That is, o/, C 7,+.

Proof. ...since RNS CU,(5,NS)and RNS' C U, (S«NS").
Combining (2.23) and (2.24) we obtain
pt(R)+e>put(RNS)+ut(RNS') or, since € > 0 is arbitrary,

pt(R) = pt(RNS)+ pt(RNS’). By subadditivity, we can reverse this
inequality and conclude that S is measurable; i.e., S € 7,+. Since S is an
arbitrary element of o7, then & C @,+.

So «7,+ is a Boolean ¢ algebra by Lemma 11.2.1, and .7, = /() is the
smallest o algebra containing <7, so we must have &/, C /,,+, as
claimed. O



