Modern Algebra

Chapter II. Measure Theory and Hilbert Spaces of Functions II.2. Measures and Measure Spaces—Proofs of Theorems

Modern Algebra

April 21, 2019

Theorem II.2.1 (continued 1)

Proof (continued).

$$= \lim_{k\to\infty} \left(\sum_{n=1}^k \mu(R_n\setminus R_{n-1})\right)$$

= $\lim_{k\to\infty} \mu\left(\bigcup_{n=1}^k (R_n\setminus T_{n-1})\right)$ since a measure is finite additive

=
$$\lim_{k\to\infty} \mu(R_k)$$
 since $\bigcup_{n=1}^k (R_n \setminus T_{n-1}) = R_k$
because R_1, R_2, \dots is increasing.

So μ is continuous from below.

Suppose $S_1, S_2, \ldots \in \mathscr{A}$ is a monotonically decreasing sequence and $\mu(Sn_0) < \infty$ for some n_0 . Then $S_{n_0} \setminus S_1, S_{n_0} \setminus S_2, \ldots$ is monotonically increasing, so if $\lim_{k\to\infty} S_k \in \mathscr{A}$ then . . .

Theorem II.2.1

Theorem II.2.1. Every measure is continuous from above and below.

Proof. Suppose R_1, R_2, \ldots is a monotonically increasing sequence from measure space $(\mathcal{X}, \mathcal{A}, \mu)$ and $\lim_{k \to \infty} R_k \in \mathcal{A}$. Then by defining $R_0 = \emptyset$ we have

$$\lim_{k\to\infty} R_k = \bigcup_{k=1}^{\infty} R_k = \bigcup_{k=1}^{\infty} (R_k \setminus R_{k-1}),$$

 $R_k \setminus R_{k-1} \in \mathscr{A}$ for k = 1, 2, ... by Theorem II.1.1(c), and the sets $R_k \setminus R_{k-1}$ are pairwise disjoint. So

$$\mu\left(\lim_{n\to\infty}R_k\right) = \mu\left(\cup_{k=1}^{\infty}(R_k\setminus R_{k-1})\right)$$

$$= \sum_{k=1}^{\infty}\mu(R_k\setminus R_{k-1}) \text{ since a measure is countably additive}$$

$$= \lim_{k\to\infty}\left(\sum_{n=1}^k\mu(R_n\setminus R_{n-1})\right)$$

Modern Algebra

April 21, 2019

Theorem II.2.1 (continued 2)

Proof (continued).

$$\lim_{k \to \infty} (S_{n_0} \setminus S_k) = \bigcup_{k=1}^{\infty} (S_{n_0} \setminus S_k) = \bigcup_{k=1}^{\infty} (S_{n_0} \cap S_k^c)$$

$$= S_{n_0} \cap (\bigcup_{k=1}^{\infty} S_k^c) \text{ by Lemma II.1.1}$$

$$= S_{n_0} \cap (\bigcap_{k=1}^{\infty} S_k)^c \text{ by Lemma II.1.2 (De Morgan)}$$

$$= S_{n_0} \cap \left(\lim_{k \to \infty} S_k\right)^c - S_{n_0} \setminus \lim_{k \to \infty} S_k$$

and by the first part of the proof (continuity from below) $\mu\left(\lim_{k\to\infty}(S_{n_0}\setminus S_k)\right)=\lim_{k\to\infty}\mu(S_{n_0}\setminus S_k)$. Since $\mu(S_{n_0} \setminus S_k) = \mu(S_{n_0}) - \mu(S_k)$ for $k \ge n_0$ by the "Excision Principle" (Exercise II.2.1(ii); this is where $\mu(S_{n_0}) < \infty$ is needed) we have

$$\mu\left(S_{n_0}\setminus \lim_{k\to\infty}S_k\right) = \mu(S_{n_0}) - \mu\left(\lim_{k\to\infty}S_k\right) = \mu(S_{n_0}) = \lim_{k\to\infty}\mu(S_k). \quad (*)$$

Modern Algebra

Theorem II.2.1. Every measure is continuous from above and below.

Proof (continued). Therefore

$$\begin{array}{ll} \mu\left(\lim_{k\to\infty}S_k\right) &=& \mu\left(S_{n_0}\setminus\left(S_{n_0}\setminus\lim_{k\to\infty}S_k\right)\right)\\ &\text{ since the sequence is decreasing}\\ &=& \mu(S_{n_0})-\mu\left(S_{n_0}\setminus\lim_{k\to\infty}S_k\right)\\ &\text{ by the Excision Principle (Exercise II.2.1(ii))}\\ &=& \lim_{k\to\infty}\mu(S_k) \text{ by (*)}. \end{array}$$

Modern Algebra

April 21, 2019 6 / 19

Theorem II.2.2 (continued)

Theorem II.2.2. Every finite, nonnegative, additive set function F on a Boolean σ algebra \mathcal{A} and satisfying $F(\emptyset) = 0$, which is either continuous from below at every $R \in \mathcal{A}$ or continuous from above at $\emptyset \in \mathcal{A}$, is necessarily also σ additive or "countably additive" (i.e., μ is a measure).

Proof (continued). If F is continuous form above at \emptyset then, since $R \setminus R_1, R \setminus R_2, \dots$ is increasing with

$$\lim_{n\to\infty} (R\setminus R_n) = \lim_{n\to\infty} \left(\cup_{k=1}^{\infty} S_k \setminus \cup_{k=1}^n S_k \right) = \lim_{n\to\infty} \left(\cup_{k=n+1}^{\infty} S_k \right) = \varnothing,$$

then we have

$$0 = F(\varnothing) = F\left(\lim_{n \to \infty} (R \setminus R_n)\right) = \lim_{n \to \infty} F(R \setminus R_n) = F(R) = \lim_{n \to \infty} F(R_n).$$

That is,
$$F(\bigcup_{k=1}^{\infty} S_k) = F(R) = \lim_{n \to \infty} F(R_n) = \sum_{k=1}^{\infty} F(S_k)$$
.

Theorem II.2.2

Theorem II.2.2. Every finite, nonnegative, additive set function F on a Boolean σ algebra \mathcal{A} and satisfying $F(\emptyset) = 0$, which is either continuous from below at every $R \in \mathcal{A}$ or continuous from above at $\emptyset \in \mathcal{A}$, is necessarily also σ additive or "countably additive" (i.e., μ is a measure).

Proof. Let S_1, S_2, \ldots be any infinite sequence of disjoint sets from \mathscr{A} . Then the sequence R_1, R_2, \ldots with $R_n = \bigcup_{k=1}^n S_k$ is monotonically increasing. Since F is additive by hypothesis then

$$F(R_n) = R(\bigcup_{k=1}^n S_k) = \sum_{k=1}^n F(S_k).$$

If F is continuous from below at $R \in \mathcal{A}$ then

$$F\left(\cup_{k=1}^{\infty}S_{k}\right)=F\left(\lim_{n\to\infty}R_{n}\right)=\lim_{n\to\infty}F(R_{n})-\lim_{n\to\infty}\left(\sum_{k=1}^{n}F(S_{k})\right)=\sum_{k=1}^{\infty}F(S_{k}).$$

Modern Algebra

So F is countably additive.

Lemma II.2.A

Lemma II.2.A. Let \mathscr{A} be a Boolean algebra on set \mathscr{X} and let μ be a measure on A. Define extended real-valued set function

$$\mu^+(R) = \inf \left\{ \sum_{k=1}^{\infty} \mu(S_k) \mid R \subset \cup_{k=1}^{\infty} S_k, S_k \in \mathscr{A} \text{ for all } k \in \mathbb{N} \right\}$$

on the power set $\mathscr{G}_{\mathscr{X}}$ of \mathscr{X} . Sets $S_1, S_2, \ldots \in \mathscr{A}$ such that $R \subset \bigcup_{k=1}^{\infty} S_k$ are said to *cover R*. For any $R_1, R_2, \ldots \in \mathscr{G}_{\mathscr{X}}$ we have

$$\mu^+(\bigcup_{n=1}^{\infty}R_n)\leq \sum_{n=1}^{\infty}\mu^+(R_n).$$

Proof. Let $\varepsilon > 0$. For each R_n there is a covering $S_{n1}, S_{n2}, \ldots \in \mathscr{A}$ such that $R_n \subset \bigcup_{k=1}^{\infty} S_{nk}$ and

$$\mu^+(R_n) \leq \sum_{k=1}^{\infty} \mu(S_{nk}) \leq \mu^+(R_n) + \frac{\varepsilon}{2^n},$$

by the infimum definition of μ^+ .

April 21, 2019 7 / 19

Lemma II.2.A

Lemma II.2.A (continued)

Proof (continued). Now $\{S_{nk} \mid n, k \in \mathbb{N}\}$ is a countable family of sets in \mathscr{A} and $\bigcup_{n=1}^{\infty} R_n \subset \bigcup_{n=1}^{\infty} S_{nk}$, so

$$\mu^+(\cup_{n=1}^{\infty}R_n) \leq \sum_{n,k=1}^{\infty}\mu(S_{nk}) = \sum_{n=1}^{\infty}\sum_{k=1}^{\infty}\mu(S_{nk})$$

$$\leq \sum_{k=1}^{\infty} \left(\mu^{+}(R_{n}) + \frac{\varepsilon}{s^{n}} \right) = \varepsilon + \sum_{n=1}^{\infty} \mu^{+}(R_{n}),$$

Since $\varepsilon > 0$ is arbitrary, the claim follows.

Centilla 11.2.1

Lemma II.2.1 (continued 1)

Proof (continued). Substituting these into (2.11) we get

$$M(R) = M(R \cap S_1 \cap S_2) + M(R \cap S_1 \cap S_2') + M(R \cap S_1' \cap S_2) + M(R \cap S_1' \cap S_2')$$

$$= M(R \cap S_1 \cap S_2) + M(R \cap S_1 \cap S_2') + M(R \cap S_1' \cap S_2) + M(R \cap (S_1 \cup S_2)') \text{ by Lemma II.1.2 (De Morgan)}$$
(2.14)

Now this equation holds for all $R \in \mathscr{G}_{\mathscr{X}}$. So by replacing R by $R \cap (S_1 \cap S_2)$ we get

$$M(R \cap (S_1 \cap S_2)) = M((R \cap (S_1 \cup S_2) \cap S_1 \cap S_2) + M((R \cap (S_1 \cup S_2) \cap S_1 \cap S_2') + M((R \cap (S_1 \cup S_2)) \cap S_1' \cap S_2) + M((R \cap (S_1 \cup S_2)) \cap (S_1 \cup S_2)')$$

$$= M(R \cap S_1 \cap S_2) + M(R \cap S_1 \cap S_2') + M(R \cap S_1' \cap S_2) \qquad (2.15)$$

since...

Lemma II.2.1

Lemma II.2.1

Lemma II.2.1. If M is an outer measure on the power set $\mathscr{G}_{\mathscr{X}}$ of \mathscr{X} then the class \mathscr{A}_M of all M-measurable sets $S \in \mathscr{G}_{\mathscr{X}}$ is a Boolean σ algebra, and the outer measure M restricted to \mathscr{A}_M is a measure.

Proof. First, we prove \mathscr{A}_M is a Boolean algebra. For any $R \in \mathscr{G}_{\mathscr{X}}$ we have

$$M(R) = M(R \cap \mathscr{X}) = 0 + M(R \cap \mathscr{X}) = M(R \cap \varnothing) + M(R \cap \mathscr{X})$$

and so $\varnothing\in\mathscr{A}_M$. Clearly if S is measurable and satisfies the Carathéodory condition, then S' satisfies the Carathéodory condition and is measurable; that is, if $S\in\mathscr{A}_M$ then $S'\in\mathscr{A}_M$. Now let $S_1,S_2\in\mathscr{A}_M$. Then for any $R\in\mathscr{G}_\mathscr{X}$ we have

$$M(R) = M(R \cap S_1) + M(R \cap S_1').$$
 (2.11)

With $R \cap S_1, R \cap S_1' \in \mathscr{G}_{\mathscr{X}}$ and the fact that S_2 is measurable then we have

$$M(R \cap S_1) = M((R \cap S_1) \cap S_2) + M((R \cap S_1) \cap S_2')$$

and $M(R \cap S_1') = M((R \cap S_1') \cap S_2) + M((R \cap S_1') \cap S_2').$

() Modern Algebra April 21, 2019 11 / 19

Lemma II.2.

Lemma II.2.1 (continued 2)

Proof (continued). ... by Lemma II.1.1,

$$(R \cap (S_1 \cup S_2)) \cap S_1 \cap S_2 = R \cap S_1 \cap S_2 \text{ since } (S_1 \cup S_2) \cap S_1 \cap S_2 = S_1 \cap S_2,$$

$$(R \cap (S_1 \cup S_2)) \cap S_1 \cap S_2' = R \cap S_1 \cap S_2'$$
 since $(S_1 \cup S_2) \cap S_1 \cap S_2' = S_1 \cap S_2'$,

$$(R \cap (S_1 \cup S_2)) \cap S_1' \cap S_2 = R \cap S_1' \cap S_2 \text{ since } (S_1 \cup S_2) \cap S_1' \cap S_2 = S_1' \cap S_2,$$

and
$$(R \cap (S_1 \cup S_2)) \cap (S_1 \cup S_2)' = \emptyset$$
 since $(S_1 \cup S_2) \cap (S_1 \cup S_2)' = \emptyset$.

Replacing part of the right hand side of (2.14) with $M(R \cap (S_1 \cup S_2)')$ we get

$$M(R) = M(R \cap (S_1 \cap S_2)) + M(R \cap (S_1 \cup S_2)')$$

for all $R \in \mathscr{G}_{\mathscr{X}}$, so that $S_1 \cup S_2 \in \mathscr{A}_M$. Therefore \mathscr{A}_M is a Boolean algebra.

Modern Algebra April 21, 2019 12 / 19 () Modern Algebra April 21, 2019 13 /

Lemma II.2.1 (continued 3)

Proof (continued). To prove the \mathscr{A}_M is a Boolean σ algebra, we consider a sequence of sets $S_1, S_2, \ldots \in \mathscr{A}_M$. We can assume without loss of generality that the sets are disjoint (or we can use the Boolean algebra properties to create a disjoint sequence from a non-disjoint sequence). With S_1 and S_2 disjoint we have $S_1 \cap S_2' = S_2$ and $S_1' \cap S_2 = S_2$ so that (2.15) becomes

$$M(R\cap (S_1\cup S_2))=M(R\cap S_1)+M(R\cap S_2)$$

and inductively we have

$$M(R \cap (\bigcup_{n=1}^{\infty} S_k)) = \sum_{k=1}^{n} M(R \cap S_k).$$
 (2.17)

Since M is an outer measure and so monotone (by subadditivity and nonnegativity) we have

$$M\left(R \cap \left(\cup_{k=1}^{n} S_{k}\right)'\right) \geq M\left(R \cap \left(\cup_{k=1}^{\infty} S_{k}\right)'\right). \tag{2.18}$$

7 (pri 21, 2015)

Lemma II.2.

Lemma II.2.1 (continued 5)

Proof (continued). So from this and (*) we have

$$M(R) \geq \sum_{k=1}^{\infty} M(R \cap S_k) + M\left(R \cap \left(\bigcup_{k=1}^{\infty} S_k\right)'\right)$$

$$\geq M(R \cap (\cup_{k=1}^{\infty} S_k)) + M(R \cap (\cup_{k=1}^{\infty} S_k)')$$
.

By subadditivity,

$$M(R) = M\left(\left(R \cap \left(\cup_{k=1}^{\infty} S_k\right)\right) \cup \left(R \cap \left(\cup_{k=1}^{\infty} S_k\right)'\right)\right)$$

$$\leq M\left(R \cap \left(\cup_{k=1}^{\infty} S_k\right)\right) + M\left(R \cap \left(\cup_{k=1}^{\infty} S_k\right)'\right),$$

hence $M(R) = M(R \cap (\bigcup_{k=1}^{\infty} S_k)) + M(R \cap (\bigcup_{k=1}^{\infty} S_k)')$ for all $R \in \mathscr{G}_{\mathscr{X}}$ so that $\bigcup_{k=1}^{\infty} S_k$ is M measurable. That is, $\bigcup_{k=1}^{\infty} S_k \in \mathscr{A}_M$ and so \mathscr{A}_M is a Boolean σ algebra.

Finally, to prove that M is σ additive on \mathscr{A}_M (and hence is a measure on \mathscr{A}_M), take $R = \bigcup_{k=1}^\infty S_k$ is (2,21) to get $M(\bigcup_{k=1}^\infty S_n) \geq \sum_{k=1}^\infty \mu(S_k)$. Countable additivity shows the reverse of this inequality and hence M is σ additive.

Lemma II.2.1 (continued 4)

Proof (continued). Now $\bigcup_{k=1}^{n} S_k$ is M measurable since \mathscr{A}_M is a Boolean algebra, so by the Carathéodory splitting condition

$$M(R) = M(R \cap (\bigcup_{k=1}^{n} S_{k})) + M(R \cap (\bigcup_{k=1}^{n} S_{k})')$$

$$= M(\bigcup_{k=1}^{n} (R \cap S_{k})) + M(R \cap (\bigcup_{k=1}^{n} S_{k})') \text{ by Lemma II.1.1}$$

$$\geq \sum_{k=1}^{n} M(R \cap S_{k}) + M(R \cap (\bigcup_{k=1}^{\infty} S_{k})') \text{ by (2.17) and (2.18).}$$

Since this holds for arbitrary $n \in \mathbb{N}$ then

$$M(R) \geq \sum_{k=1}^{\infty} M(R \cap S_k) + M\left(R \cap \left(\bigcup_{k=1}^{\infty} S_k\right)'\right).$$
 (*)

As an outer measure M is countably subadditive,

$$M(R \cap (\cup_{k=1}^{\infty} S_k)) = M(\cup_{k=1}^{\infty} (R \cap S_k)) \leq \sum_{k=1}^{\infty} M(R \cap S_k).$$

Modern Algebra April 21, 2019 15 /

Lemma II.2.

Lemma II.2.2

Lemma II.2.2. Every set R in the Boolean σ algebra $\mathscr{A}_{\sigma} = \mathscr{A}_{\sigma}(\mathscr{A})$ generated by \mathscr{A} is μ^+ measurable. That is, $\mathscr{A}_{\sigma} \subset \mathscr{A}_{\mu^+}$.

Proof. Let $R \in \mathscr{G}_{\mathscr{X}}$. By the infimum definition of μ^+ , for any $\varepsilon > 0$ there is sequence $S_1, S_2, \ldots \in \mathscr{A}$ such that $R \subset \bigcup_{k=1}^{\infty} S_k$ and

$$\mu^{+}(R) \le \sum_{k=1}^{\infty} \mu(S_k) \le \mu^{+}(R) + \varepsilon \tag{2.23}$$

(here, μ is a measure on $\mathscr A$ that defines outer measure μ^+). For any $S \in \mathscr A$ we have (since $S_k = (S_k \cap S) \cup (S_k \cap S')$ and μ is a measure on $\mathscr A$ and hence countable additivity),

$$\sum_{k=1}^{\infty} \mu(S_k) = \sum_{k=1}^{\infty} \mu((S_k \cap S) \cup (S_k \cap S')) = \sum_{k=1}^{\infty} (\mu(S_k \cap S) + \mu(S_k \cap S'))$$

$$= \sum_{k=1}^{\infty} \mu(S_k \cap S) + \sum_{k=1}^{\infty} \mu(S_k \cap S') \ge \mu^+(R \cap S) + \mu^+(R \cap S')$$
 (2.24)

Lemma II.2.2 (continued)

Lemma II.2.2. Every set R in the Boolean σ algebra $\mathscr{A}_{\sigma} = \mathscr{A}_{\sigma}(\mathscr{A})$ generated by \mathscr{A} is μ^+ measurable. That is, $\mathscr{A}_{\sigma} \subset \mathscr{A}_{\mu^+}$.

Proof. ... since $R \cap S \subset \bigcup_{k=1}^{\infty} (S_n \cap S)$ and $R \cap S' \subset \bigcup_{k=1}^{\infty} (S_k \cap S')$. Combining (2.23) and (2.24) we obtain $\mu^+(R) + \varepsilon \geq \mu^+(R \cap S) + \mu^+(R \cap S')$ or, since $\varepsilon > 0$ is arbitrary, $\mu^+(R) \geq \mu^+(R \cap S) + \mu^+(R \cap S')$. By subadditivity, we can reverse this inequality and conclude that S is measurable; i.e., $S \in \mathscr{A}_{\mu^+}$. Since S is an arbitrary element of \mathscr{A} , then $\mathscr{A} \subset \mathscr{A}_{\mu^+}$.

So \mathscr{A}_{μ^+} is a Boolean σ algebra by Lemma II.2.1, and $\mathscr{A}_{\sigma}=\mathscr{A}_{\sigma}(\mathscr{A})$ is the smallest σ algebra containing \mathscr{A} , so we must have $\mathscr{A}_{\sigma}\subset\mathscr{A}_{\mu^+}$, as claimed. \square

() Modern Algebra April 21, 2019 18 / 19