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II.2. Measures and Measure Spaces—Proofs of Theorems
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Theorem II.2.1

Theorem II.2.1

Theorem II.2.1. Every measure is continuous from above and below.

Proof. Suppose R1,R2, . . . is a monotonically increasing sequence from
measure space (X ,A , µ) and limk→∞ Rk ∈ A . Then by defining R0 = ∅
we have

lim
k→∞

Rk = ∪∞k=1Rk = ∪·∞k=1(Rk \ Rk−1),

Rk \ Rk−1 ∈ A for k = 1, 2, . . . by Theorem II.1.1(c), and the sets
Rk \ Rk−1 are pairwise disjoint.

So

µ
(

lim
n→∞

Rk

)
= µ (∪∞k=1(Rk \ Rk−1))

=
∞∑

k=1

µ(Rk \ Rk−1) since a measure is countably additive

= lim
k→∞

(
k∑

n=1

µ(Rn \ Rn−1)

)
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Theorem II.2.1

Theorem II.2.1 (continued 1)

Proof (continued).

= lim
k→∞

(
k∑

n=1

µ(Rn \ Rn−1)

)
= lim

k→∞
µ
(
∪k

n=1(Rn \ Tn−1)
)

since a measure is finite additive

= lim
k→∞

µ(Rk) since ∪k
n=1 (Rn \ Tn−1) = Rk

because R1,R2, . . . is increasing.

So µ is continuous from below.

Suppose S1,S2, . . . ∈ A is a monotonically decreasing sequence and
µ(Sn0) < ∞ for some n0. Then Sn0 \ S1,Sn0 \ S2, . . . is monotonically
increasing, so if limk→∞ Sk ∈ A then . . .
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Theorem II.2.1

Theorem II.2.1 (continued 2)

Proof (continued).

lim
k→∞

(Sn0 \ Sk) = ∪∞k=1(Sn0 \ Sk) = ∪∞k=1(Sn0 ∩ Sc
k )

= Sn0 ∩ (∪∞k=1S
c
k ) by Lemma II.1.1

= Sn0 ∩ (∩∞k=1Sk)c by Lemma II.1.2 (De Morgan)

= Sn0 ∩
(

lim
k→∞

Sk

)c

− Sn0 \ lim
k→∞

Sk

and by the first part of the proof (continuity from below)
µ (limk→∞(Sn0 \ Sk)) = limk→∞ µ(Sn0 \ Sk). Since
µ(Sn0 \ Sk) = µ(Sn0)− µ(Sk) for k ≥ n0 by the “Excision Principle”
(Exercise II.2.1(ii); this is where µ(Sn0) < ∞ is needed) we have

µ

(
Sn0 \ lim

k→∞
Sk

)
= µ(Sn0)− µ

(
lim

k→∞
Sk

)
= µ(Sn0) = lim

k→∞
µ(Sk). (∗)
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Theorem II.2.1

Theorem II.2.1 (continued 3)

Theorem II.2.1. Every measure is continuous from above and below.

Proof (continued). Therefore

µ

(
lim

k→∞
Sk

)
= µ

(
Sn0 \

(
Sn0 \ lim

k→∞
Sk

))
since the sequence is decreasing

= µ(Sn0)− µ

(
Sn0 \ lim

k→∞
Sk

)
by the Excision Principle (Exercise II.2.1(ii))

= lim
k→∞

µ(Sk) by (∗).

() Modern Algebra April 21, 2019 6 / 19



Theorem II.2.2

Theorem II.2.2

Theorem II.2.2. Every finite, nonnegative, additive set function F on a
Boolean σ algebra A and satisfying F (∅) = 0, which is either continuous
from below at every R ∈ A or continuous from above at ∅ ∈ A, is
necessarily also σ additive or “countably additive” (i.e., µ is a measure).

Proof. Let S1,S2, . . . be any infinite sequence of disjoint sets from A .
Then the sequence R1,R2, . . . with Rn = ∪· nk=1Sk is monotonically
increasing. Since F is additive by hypothesis then

F (Rn) = R (∪· nk=1Sk) =
n∑

k=1

F (Sk).

If F is continuous from below at R ∈ A then

F (∪·∞k=1Sk) = F
(

lim
n→∞

Rn

)
= lim

n→∞
F (Rn)− lim

n→∞

(
n∑

k=1

F (Sk)

)
=

∞∑
k=1

F (Sk).

So F is countably additive.
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Theorem II.2.2

Theorem II.2.2 (continued)

Theorem II.2.2. Every finite, nonnegative, additive set function F on a
Boolean σ algebra A and satisfying F (∅) = 0, which is either continuous
from below at every R ∈ A or continuous from above at ∅ ∈ A, is
necessarily also σ additive or “countably additive” (i.e., µ is a measure).

Proof (continued). If F is continuous form above at ∅ then, since
R \ R1,R \ R2, . . . is increasing with

lim
n→∞

(R \ Rn) = lim
n→∞

(∪·∞k=1Sk \ ∪· nk=1Sk) = lim
n→∞

(
∪·∞k=n+1Sk

)
= ∅,

then we have

0 = F (∅) = F
(

lim
n→∞

(R \ Rn)
)

= lim
n→∞

F (R \ Rn) = F (R) = lim
n→∞

F (Rn).

That is, F (∪·∞k=1Sk) = F (R) = limn→∞ F (Rn) =
∑∞

k=1 F (Sk).
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Lemma II.2.A

Lemma II.2.A

Lemma II.2.A. Let A be a Boolean algebra on set X and let µ be a
measure on A . Define extended real-valued set function

µ+(R) = inf

{ ∞∑
k=1

µ(Sk)

∣∣∣∣∣ R ⊂ ∪∞k=1Sk ,Sk ∈ A for all k ∈ N

}
on the power set GX of X . Sets S1,S2, . . . ∈ A such that R ⊂ ∪∞k=1Sk

are said to cover R. For any R1,R2, . . . ∈ GX we have

µ+ (∪∞n=1Rn) ≤
∞∑

n=1

µ+(Rn).

Proof. Let ε > 0. For each Rn there is a covering Sn1,Sn2, . . . ∈ A such
that Rn ⊂ ∪∞k=1Snk and

µ+(Rn) ≤
∞∑

k=1

µ(Snk) ≤ µ+(Rn) +
ε

2n
,

by the infimum definition of µ+.
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Lemma II.2.A

Lemma II.2.A (continued)

Proof (continued). Now {Snk | n, k ∈ N} is a countable family of sets in
A and ∪∞n=1Rn ⊂ ∪∞n,k=1Snk , so

µ+ (∪∞n=1Rn) ≤
∞∑

n,k=1

µ(Snk) =
∞∑

n=1

∞∑
k=1

µ(Snk)

≤
∞∑

k=1

(
µ+(Rn) +

ε

sn

)
= ε +

∞∑
n=1

µ+(Rn),

Since ε > 0 is arbitrary, the claim follows.
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Lemma II.2.1

Lemma II.2.1

Lemma II.2.1. If M is an outer measure on the power set GX of X then
the class AM of all M-measurable sets S ∈ GX is a Boolean σ algebra,
and the outer measure M restricted to AM is a measure.

Proof. First, we prove AM is a Boolean algebra. For any R ∈ GX we have

M(R) = M(R ∩X ) = 0 + M(R ∩X ) = M(R ∩∅) + M(R ∩X )

and so ∅ ∈ AM . Clearly if S is measurable and satisfies the Carathéodory
condition, then S ′ satisfies the Carathéodory condition and is measurable;
that is, if S ∈ AM then S ′ ∈ AM .

Now let S1,S2 ∈ AM . Then for any
R ∈ GX we have

M(R) = M(R ∩ S1) + M(R ∩ S ′1). (2.11)

With R ∩S1,R ∩S ′1 ∈ GX and the fact that S2 is measurable then we have

M(R ∩ S1) = M((R ∩ S1) ∩ S2) + M((R ∩ S1) ∩ S ′2)

and M(R ∩ S ′1) = M((R ∩ S ′1) ∩ S2) + M((R ∩ S ′1) ∩ S ′2).
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condition, then S ′ satisfies the Carathéodory condition and is measurable;
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Lemma II.2.1

Lemma II.2.1 (continued 1)

Proof (continued). Substituting these into (2.11) we get

M(R) = M(R ∩ S1 ∩ S2) + M(R ∩ S1 ∩ S ′2) + M(R ∩ S ′1 ∩ S2)

+M(R ∩ S ′1 ∩ S ′2)

= M(R ∩ S1 ∩ S2) + M(R ∩ S1 ∩ S ′2) + M(R ∩ S ′1 ∩ S2)

+M(R ∩ (S1 ∪ S2)
′) by Lemma II.1.2 (De Morgan) (2.14)

Now this equation holds for all R ∈ GX . So by replacing R by
R ∩ (S1 ∩ S2) we get

M(R∩(S1∩S2)) = M((R∩(S1∪S2)∩S1∩S2)+M((R∩(S1∪S2)∩S1∩S ′2)

+M((R ∩ (S1 ∪ S2)) ∩ S ′1 ∩ S2) + M((R ∩ (S1 ∪ S2)) ∩ (S1 ∪ S2)
′)

= M(R ∩ S1 ∩ S2) + M(R ∩ S1 ∩ S ′2) + M(R ∩ S ′1 ∩ S2) (2.15)

since. . .
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Lemma II.2.1

Lemma II.2.1 (continued 2)

Proof (continued). . . . by Lemma II.1.1,

(R ∩ (S1 ∪S2))∩S1 ∩S2 = R ∩S1 ∩S2 since (S1 ∪S2)∩S1 ∩S2 = S1 ∩S2,

(R ∩ (S1 ∪S2))∩S1 ∩S ′2 = R ∩S1 ∩S ′2 since (S1 ∪S2)∩S1 ∩S ′2 = S1 ∩S ′2,

(R ∩ (S1 ∪S2))∩S ′1 ∩S2 = R ∩S ′1 ∩S2 since (S1 ∪S2)∩S ′1 ∩S2 = S ′1 ∩S2,

and (R ∩ (S1 ∪ S2)) ∩ (S1 ∪ S2)
′ = ∅ since (S1 ∪ S2) ∩ (S1 ∪ S2)

′ = ∅.

Replacing part of the right hand side of (2.14) with M(R ∩ (S1 ∪ S2)
′) we

get
M(R) = M(R ∩ (S1 ∩ S2)) + M(R ∩ (S1 ∪ S2)

′)

for all R ∈ GX , so that S1 ∪S2 ∈ AM . Therefore AM is a Boolean algebra.
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Lemma II.2.1

Lemma II.2.1 (continued 3)

Proof (continued). To prove the AM is a Boolean σ algebra, we consider
a sequence of sets S1,S2, . . . ∈ AM . We can assume without loss of
generality that the sets are disjoint (or we can use the Boolean algebra
properties to create a disjoint sequence from a non-disjoint sequence).
With S1 and S2 disjoint we have S1 ∩ S ′2 = S2 and S ′1 ∩ S2 = S2 so that
(2.15) becomes

M(R ∩ (S1 ∪ S2)) = M(R ∩ S1) + M(R ∩ S2)

and inductively we have

M (R ∩ (∪·∞n=1Sk)) =
n∑

k=1

M(R ∩ Sk). (2.17)

Since M is an outer measure and so monotone (by subadditivity and
nonnegativity) we have

M
(
R ∩ (∪· nk=1Sk)′

)
≥ M

(
R ∩ (∪·∞k=1Sk)′

)
. (2.18)

() Modern Algebra April 21, 2019 14 / 19



Lemma II.2.1

Lemma II.2.1 (continued 3)

Proof (continued). To prove the AM is a Boolean σ algebra, we consider
a sequence of sets S1,S2, . . . ∈ AM . We can assume without loss of
generality that the sets are disjoint (or we can use the Boolean algebra
properties to create a disjoint sequence from a non-disjoint sequence).
With S1 and S2 disjoint we have S1 ∩ S ′2 = S2 and S ′1 ∩ S2 = S2 so that
(2.15) becomes

M(R ∩ (S1 ∪ S2)) = M(R ∩ S1) + M(R ∩ S2)

and inductively we have

M (R ∩ (∪·∞n=1Sk)) =
n∑

k=1

M(R ∩ Sk). (2.17)

Since M is an outer measure and so monotone (by subadditivity and
nonnegativity) we have

M
(
R ∩ (∪· nk=1Sk)′

)
≥ M

(
R ∩ (∪·∞k=1Sk)′

)
. (2.18)

() Modern Algebra April 21, 2019 14 / 19



Lemma II.2.1

Lemma II.2.1 (continued 4)

Proof (continued). Now ∪n
k=1Sk is M measurable since AM is a Boolean

algebra, so by the Carathéodory splitting condition

M(R) = M (R ∩ (∪· nk=1Sk)) + M
(
R ∩ (∪· nk=1Sk)′

)
= M (∪· nk=1(R ∩ Sk)) + M

(
R ∩ (∪· nk=1Sk)′

)
by Lemma II.1.1

≥
n∑

k=1

M(R ∩ Sk) + M
(
R ∩ (∪·∞k=1Sk)′

)
by (2.17) and (2.18).

Since this holds for arbitrary n ∈ N then

M(R) ≥
∞∑

k=1

M(R ∩ Sk) + M
(
R ∩ (∪·∞k=1Sk)′

)
. (∗)

As an outer measure M is countably subadditive,

M (R ∩ (∪·∞k=1Sk)) = M (∪·∞k=1(R ∩ Sk)) ≤
∞∑

k=1

M(R ∩ Sk).
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Lemma II.2.1 (continued 5)

Proof (continued). So from this and (∗) we have

M(R) ≥
∞∑

k=1

M(R ∩ Sk) + M
(
R ∩ (∪·∞k=1Sk)′

)
≥ M (R ∩ (∪·∞k=1Sk)) + M

(
R ∩ (∪·∞k=1Sk)′

)
.

By subadditivity,

M(R) = M
(
(R ∩ (∪·∞k=1Sk)) ∪

(
R ∩ (∪·∞k=1Sk)′

))
≤ M (R ∩ (∪·∞k=1Sk)) + M

(
R ∩ (∪·∞k=1Sk)′
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(
R ∩ (∪·∞k=1Sk)′

)
for all R ∈ GX so

that ∪∞k=1Sk is M measurable. That is, ∪∞k=1Sk ∈ AM and so AM is a
Boolean σ algebra.

Finally, to prove that M is σ additive on AM (and hence is a measure on
AM), take R = ∪·∞k=1Sk is (2,21) to get M (∪·∞k=1Sn) ≥

∑∞
k=1 µ(Sk).

Countable additivity shows the reverse of this inequality and hence M is σ
additive.
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Lemma II.2.2

Lemma II.2.2

Lemma II.2.2. Every set R in the Boolean σ algebra Aσ = Aσ(A )
generated by A is µ+ measurable. That is, Aσ ⊂ Aµ+ .

Proof. Let R ∈ GX . By the infimum definition of µ+, for any ε > 0 there
is sequence S1,S2, . . . ∈ A such that R ⊂ ∪∞k=1Sk and

µ+(R) ≤
∞∑

k=1

µ(Sk) ≤ µ+(R) + ε (2.23)

(here, µ is a measure on A that defines outer measure µ+).

For any
S ∈ A we have (since Sk = (Sk ∩ S)∪· (Sk ∩ S ′) and µ is a measure on A
and hence countable additivity),
∞∑

k=1

µ(Sk) =
∞∑

k=1

µ((Sk ∩ S) ∪· (Sk ∩ S ′)) =
∞∑

k=1

(µ(Sk ∩ S) + µ(Sk ∩ S ′))

=
∞∑

k=1

µ(Sk ∩ S) +
∞∑

k=1

µ(Sk ∩ S ′) ≥ µ+(R ∩ S) + µ+(R ∩ S ′) (2.24)
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Lemma II.2.2

Lemma II.2.2 (continued)

Lemma II.2.2. Every set R in the Boolean σ algebra Aσ = Aσ(A )
generated by A is µ+ measurable. That is, Aσ ⊂ Aµ+ .

Proof. . . . since R ∩ S ⊂ ∪∞k=1(Sn ∩ S) and R ∩ S ′ ⊂ ∪∞k=1(Sk ∩ S ′).
Combining (2.23) and (2.24) we obtain
µ+(R) + ε ≥ µ+(R ∩ S) + µ+(R ∩ S ′) or, since ε > 0 is arbitrary,
µ+(R) ≥ µ+(R ∩ S) + µ+(R ∩ S ′). By subadditivity, we can reverse this
inequality and conclude that S is measurable; i.e., S ∈ Aµ+ . Since S is an
arbitrary element of A , then A ⊂ Aµ+ .

So Aµ+ is a Boolean σ algebra by Lemma II.2.1, and Aσ = Aσ(A ) is the
smallest σ algebra containing A , so we must have Aσ ⊂ Aµ+ , as
claimed.
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Lemma II.2.2 (continued)
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Theorem II.2.3

Theorem II.2.3

Theorem II.2.3. Let µ be a measure defined on the Boolean algebra A
of subsets of a given set X . The set function

µ = inf

{ ∞∑
k=1

µ(Sk)

∣∣∣∣∣ R ⊂ ∪∞k=1Sk ,Sk ∈ A for all n ∈ N

}

for R ∈ Aσ = Aσ(A ), is a measure on Aσ which coincides with µ on
A : µ(S) = µ(S) for all S ∈ A . If µ is a σ finite measure, then µ is also
σ finite, and µ is the only measure on Aσ which coincides with µ on A .
The measure µ is called the extension of µ.

Proof.
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