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Theorem 11.2.1

Theorem 11.2.1. Every measure is continuous from above and below.
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Theorem 11.2.1

Theorem 11.2.1

Theorem 11.2.1. Every measure is continuous from above and below.

Proof. Suppose Ry, R», ... is a monotonically increasing sequence from

measure space (2,7, 1) and limg_o, Rx € /. Then by defining Ry = &
we have

Jim Ric = Ui Rie = Uiz (Ri\ Ri-1),

Rk \ Rxk—1 € o for k =1,2,... by Theorem I1.1.1(c), and the sets
Rk \ Rk—1 are pairwise disjoint.
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Theorem 11.2.1

Theorem 11.2.1

Theorem 11.2.1. Every measure is continuous from above and below.

Proof. Suppose Ry, R», ... is a monotonically increasing sequence from

measure space (2,7, 1) and limg_o, Rx € /. Then by defining Ry = &
we have

I|m Rk—Uk 1Rk—Uk 1(Rk\Rk 1)

k—o00

Rk \ Rxk—1 € o for k =1,2,... by Theorem I1.1.1(c), and the sets
Rk \ Rk—1 are pairwise disjoint. So

p(im R = p (U (Re\ Rea))
ZH(Rk \ Rk—1) since a measure is countably additive
k=1

= Jim (Zu \Rnl>
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Theorem 11.2.1 (continued 1)

Proof (continued).

- kII—T)o <Z,u n\ Rna )
= klim 1 (Un:1(Rn\ Tn,1)> since a measure is finite additive

= lim ji(Ry) since UK (Ra\ Tho1) = Rx

because Ry, Ry, ... is increasing.

So u is continuous from below.
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Theorem 11.2.1 (continued 1)

Proof (continued).

= k"j;o <ZM n \ Rn-1 )
= kli_}rr;()u (Un:1(Rn\ Tn,1)> since a measure is finite additive
= lim ji(Ry) since UK (Ra\ Tho1) = Rx

because Ry, Ry, ... is increasing.

So u is continuous from below.

Suppose 51, 5», ... € &/ is a monotonically decreasing sequence and
wu(Sno) < oo for some ng. Then Spy \ S1, Sny \ S2, . .. is monotonically
increasing, so if limy_ .., Sk € < then ...
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Theorem 11.2.1 (continued 2)

Proof (continued).

(S \Sk) = UgZa(Sno \ Sk) = UgZa(Sno N1 55)
= Sp, N(Uz21S;) by Lemma Il.1.1
= Sp, N(NZ21Sk)° by Lemma 11.1.2 (De Morgan)

= 5,70 N <klim 5k> — 5,,0 \ k“m Sk

—00

lim
k—o00

and by the first part of the proof (continuity from below)
1 (limk—oo(Smo \ Sk)) = limk—oc 1(Sno \ Sk)-
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Theorem 11.2.1 (continued 2)

Proof (continued).

(S \Sk) = UgZa(Sno \ Sk) = UgZa(Sno N1 55)
= Sp, N(Uz21S;) by Lemma Il.1.1
= Sp, N(NZ21Sk)° by Lemma 11.1.2 (De Morgan)

= 5,70 N <klim 5k> — 5,,0 \ k“m Sk

lim
k—o00

—00

and by the first part of the proof (continuity from below)
p(limg—oo(Snp \ Sk)) = limg—oo 4(Sny \ Sk)- Since

1(Sny \ Sk) = 1(Sn,) — 1(Sk) for k > no by the “Excision Principle”
(Exercise 11.2.1(ii); this is where p(Sp,) < 0o is needed) we have

(5w i Se) = s(Sm) = fim i) = n(S) = im u(S0). ()
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Theorem 11.2.1 (continued 3)

Theorem 11.2.1. Every measure is continuous from above and below.

Proof (continued). Therefore

(5] = (500 (5w 1))

since the sequence is decreasing
— ulSw) =4 (S im 51
by the Excision Principle (Exercise 11.2.1(ii))
Jim (k) by ().
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Theorem 11.2.2
Theorem 11.2.2. Every finite, nonnegative, additive set function F on a
Boolean o algebra A and satisfying F(@) = 0, which is either continuous

from below at every R € A or continuous from above at @ € A4, is
necessarily also o additive or “countably additive” (i.e., u is a measure).
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Theorem 11.2.2
Theorem 11.2.2. Every finite, nonnegative, additive set function F on a
Boolean o algebra A and satisfying F(@) = 0, which is either continuous

from below at every R € A or continuous from above at @ € A4, is
necessarily also o additive or “countably additive” (i.e., u is a measure).

Proof. Let 51,5, ... be any infinite sequence of disjoint sets from ..
Then the sequence Ry, R», ... with R, = U]_; Sy is monotonically
increasing. Since F is additive by hypothesis then

F(Rn) = Uk 15k ZF Sk
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Theorem 11.2.2

Theorem 11.2.2. Every finite, nonnegative, additive set function F on a
Boolean o algebra A and satisfying F(@) = 0, which is either continuous
from below at every R € A or continuous from above at @ € A4, is
necessarily also o additive or “countably additive” (i.e., u is a measure).

Proof. Let 51,5, ... be any infinite sequence of disjoint sets from ..
Then the sequence Ry, R», ... with R, = U]_; Sy is monotonically
increasing. Since F is additive by hypothesis then

F(Rn) = Uk 15k ZF Sk

If F is continuous from below at R € & then

F(UiO:]'Sk) - F (nll—[go Rn) o n||—>n<loF _nll_[go <ZF Sk > = iF Sk
=1

So F is countably additive.
Modern Algebra April 21, 2019 7 /19



Theorem 11.2.2 (continued)

Theorem 11.2.2. Every finite, nonnegative, additive set function F on a
Boolean o algebra A and satisfying F(2&) = 0, which is either continuous
from below at every R € A or continuous from above at @ € A, is
necessarily also o additive or “countably additive” (i.e., 1 is a measure).

Proof (continued). If F is continuous form above at & then, since
R\ Ri,R\ Ra,... is increasing with

lim (R\ Rp) = lim (W3S \ U7, Sk)

n—oo

(Uiozn—i—lsk) =9,

= lim
n—oo

then we have

0= F(2) = F (lim (R\Ry)) = lim F(R\ Ry) = F(R) = lim F(R,).

That is, F (U2, S) = F(R) = limp_oo F(Ra) = 3252, F(Sk)- 0

Modern Algebra April 21,2019 8/ 19



Lemma II.2.A

Lemma [1.2.A

Lemma I1.2.A. Let ¥ be a Boolean algebra on set 2" and let u be a
measure on &7. Define extended real-valued set function

i (R) = inf { > u(si)
k=1

on the power set ¥4 of Z". Sets 51,5;,... € & such that R C Uz, S
are said to cover R. For any Ry, Ro,... € 99 we have

R C UFZ1Sk, Sk € o for all k € N}

oo
pt(UnaRe) < it (R).
n=1
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Lemma I.2.A

Lemma I1.2.A. Let ¥ be a Boolean algebra on set 2" and let u be a
measure on &7. Define extended real-valued set function

= inf { > u(Sk)
k=1

on the power set ¥y of Z". Sets 51,5;,... € & such that R C U2 ;S
are said to cover R. For any Ry, Ro,... € 99 we have

oo
Pt (UaRo) < 3 i (Ry
n=1

Proof. Let ¢ > 0. For each R, there is a covering Sp1, Sp2, ... € & such
that R, C Uz ; Spk and

R C UFZ1Sk, Sk € o for all k € N}

<Z:U’ nk </'L R)+§a

by the infimum definition of u™.
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Lemma 11.2.A (continued)

Proof (continued). Now {S,x | n, k € N} is a countable family of sets in

o/ and US 1 Ry CUnk 1Snk, so

NJF (UpZ1Rs) < Z 1(Snk) = Z ZN(Snk

n k=1 n=1 k=1
o0 c oo
<> (1 R+ 5 ) =+ D (R
k=1 n=1

Since € > 0 is arbitrary, the claim follows.

Modern Algebra

10 / 19



Lemma 11.2.1
Lemma 11.2.1. If M is an outer measure on the power set ¥4 of 2 then

the class @) of all M-measurable sets S € &4 is a Boolean ¢ algebra,
and the outer measure M restricted to &7, is a measure.
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Lemma 11.2.1

Lemma 11.2.1

Lemma 11.2.1. If M is an outer measure on the power set ¥4 of 2 then
the class @) of all M-measurable sets S € &4 is a Boolean ¢ algebra,
and the outer measure M restricted to &7, is a measure.

Proof. First, we prove 7), is a Boolean algebra. For any R € 49 we have
MR)=MRNZ)=0+MRNZ)=MRND)+ MRNZ)

and so @ € 7). Clearly if S is measurable and satisfies the Carathéodory
condition, then S’ satisfies the Carathéodory condition and is measurable;
that is, if S € &) then S’ € .

Modern Algebra April 21, 2019
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Lemma 11.2.1

Lemma 11.2.1. If M is an outer measure on the power set ¥4 of 2 then
the class @) of all M-measurable sets S € &4 is a Boolean ¢ algebra,
and the outer measure M restricted to &7, is a measure.

Proof. First, we prove 7), is a Boolean algebra. For any R € 49 we have
MR)=MRNZ)=0+MRNZ)=MRND)+ MRNZ)

and so @ € 7). Clearly if S is measurable and satisfies the Carathéodory
condition, then S’ satisfies the Carathéodory condition and is measurable;
that is, if S € @) then S’ € &);. Now let S1, S, € .@). Then for any

R € Y9 we have

M(R) = M(RNS1) +M(RNS}). (2.11)
With RNS1, RNS] € 99 and the fact that S, is measurable then we have
MRNS1)=M(RNS1)NS)+M(RNS)NSS)
and M(RN Sj) = M((RNS;)NS) + M((RNS;)N'SY).
Modern Algebra April 21,2019 11 /19



Lemma 11.2.1 (continued 1)

Proof (continued). Substituting these into (2.11) we get

M(R) = M(RNSNS)+MRNSNS,)+MRNSINS,)
+M(RN S;NSY)
= MRNSNS)+MRNS NS +MRNSNS,)
+M(RN (51 US)') by Lemma 11.1.2 (De Morgan)  (2.14)
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Lemma 11.2.1 (continued 1)

Proof (continued). Substituting these into (2.11) we get

M(R) = M(RNSNS)+MRNSNS,)+MRNSINS,)
+M(RN S;NSY)
= MRNSNS)+MRNS NS +MRNSNS,)
+M(RN (51 US)') by Lemma 11.1.2 (De Morgan)  (2.14)

Now this equation holds for all R € ¢4 . So by replacing R by
RN (51N S2) we get

M(RN(51NS2)) = M((RN(51US)NS1NS)+M((RN(S1US)NSINSS)
FM((RN(S1US))NSINS)+ M(RN(S1US))N(S1US))

=MRNSINS)+MRNSNS)+MRNSNS)  (2.15)

since. . .
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Lemma 11.2.1 (continued 2)

Proof (continued). ...by Lemma II.1.1,
(Rﬂ(slUSQ))ﬂ51ﬂ52 = RNS1 NS, since (51U52)051ﬂ52 =5NS,,

(Rﬂ(51U52))051ﬂ52 RﬂSlﬂSQ since (51U52)ﬂ51ﬂ52 51ﬂ52,
(Rﬁ(leJSQ))ﬂSlﬂSQ = R051ﬁ52 since (51U52)ﬂ51ﬂ52 = 51ﬂ52,
and (RN(S1US))N(51US) = since (S1US)N(S1US) =o.
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Lemma 11.2.1 (continued 2)

Proof (continued). ...by Lemma II.1.1,
(Rﬂ(slUSQ))ﬂ51ﬂ52 = RNS1 NS, since (51U52)051ﬂ52 =5NS,,

(Rﬂ(51U52))051ﬂ52 RﬂSlﬂSQ since (51U52)ﬂ51ﬂ52 51ﬂ52,
(RN(51US%))NSINS; = RNS; NSy since (S1US)NSI NS, =5NS,,
and (RN(S1US))N(51US) = since (S1US)N(S1US) =o.

Replacing part of the right hand side of (2.14) with M(R N (51 U S2)) we
get
M(R) = M(RN (51N S)) + M(RN (51U S,)")

forall R € Y4, so that 51U S, € ). Therefore <), is a Boolean algebra.
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Lemma 11.2.1

Lemma [1.2.1 (continued 3)

Proof (continued). To prove the <7 is a Boolean ¢ algebra, we consider
a sequence of sets 51, 5,,... € ;. We can assume without loss of
generality that the sets are disjoint (or we can use the Boolean algebra
properties to create a disjoint sequence from a non-disjoint sequence).
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Lemma [1.2.1 (continued 3)

Proof (continued). To prove the <7 is a Boolean ¢ algebra, we consider
a sequence of sets 51, 5,,... € ;. We can assume without loss of
generality that the sets are disjoint (or we can use the Boolean algebra
properties to create a disjoint sequence from a non-disjoint sequence).
With S; and S, disjoint we have S NS, = S and S{ N S = S; so that
(2.15) becomes

M(RN(S51US))=MRNS)+MRNS,)
and inductively we have

M (RN (W5215k)) :ZH:M(RQS,(). (2.17)
k=1

Since M is an outer measure and so monotone (by subadditivity and
nonnegativity) we have

M(RO(18)) > M(RN(US)) . (218)
Modern Algebra April 21,2019 14 /19



Lemma 11.2.1 (continued 4)

Proof (continued). Now U}_; Sy is M measurable since 7 is a Boolean
algebra, so by the Carathéodory splitting condition

M(R) = M (RN (Ur=1Sk)) + M (RN (=1 Sk))
= M(Ui_1(RNSK)+ M (RN (Jj—1S«)") by Lemma I1.1.1

> Zn:M(Rmsk) + M (RN (W32,5¢)) by (2.17) and (2.18).
k=1
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Lemma 11.2.1

Lemma 11.2.1 (continued 4)

Proof (continued). Now U}_; Sy is M measurable since 7 is a Boolean
algebra, so by the Carathéodory splitting condition

M(R) = M (RN (Ur=1Sk)) + M (RN (=1 Sk))
= M(Ui_1(RNSK)+ M (RN (Jj—1S«)") by Lemma I1.1.1

> > M(RNSK)+ M (RN (UZ;S)") by (2.17) and (2.18).
k=1

Since this holds for arbitrary n € N then

M(R) =Y M(RNS)+M(RN(W5:S)) . (%)
k=1
As an outer measure M is countably subadditive,

o0

M (RN (U52,Sk)) = M (U324 (RN Sk)) Z (RN Sk).
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Lemma [1.2.1 (continued 5)

Proof (continued). So from this and (x) we have

M(R) > i M(R N Si) + M (RN (53215)')
k=1

> M (RN (W) + M (RN (W32, 54)) -

Modern Algebra April 21, 2019
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Lemma [1.2.1 (continued 5)

Proof (continued). So from this and (x) we have

M(R) > i M(R N Si) + M (RN (53215)')
k=1

> M (RN (W) + M (RN (W32, 54)) -
By subadditivity,
M(R) = M (RN (952150)) U (RN (952154)'))
< M(RN(WZ1SK) + M (RN (21 Sk))

hence M(R) = M (RN (W1 Sk)) + M (RN (L5, Sk)') for all R € 4y so
that UZ2 ; Sk is M measurable. That is, Uz ; Sk € %y and so @)y is a
Boolean o algebra.
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Lemma [1.2.1 (continued 5)

Proof (continued). So from this and (x) we have

M(R) =Y M(RNSe)+ M (RN (952 S))
k=1

> M (RN (W) + M (RN (W32, 54)) -

By subadditivity,
M(R) = M (RO (U2150) U (RN (72150)')

< M(RN(WZ1Sk) + M (RN (U1 5)')
hence M(R) = M (RN (W1 Sk)) + M (RN (L5, Sk)') for all R € 4y so
that UZ2 ; Sk is M measurable. That is, Uz ; Sk € %y and so @)y is a
Boolean o algebra.
Finally, to prove that M is o additive on 27 (and hence is a measure on
), take R = U2 1 Sk is (2,21) to get M (W21 Sn) > > o0y 1u(Sk).
Countable additivity shows the reverse of this inequality and hence M is o
additive. Ol
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Lemma 11.2.2

Lemma 11.2.2. Every set R in the Boolean o algebra <7, = o7,(</)
generated by &7 is i measurable. That is, o7, C /,,+.
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Lemma 11.2.2

Lemma 11.2.2

Lemma 11.2.2. Every set R in the Boolean o algebra <7, = o7,(</)
generated by &7 is i measurable. That is, o7, C /,,+.

Proof. Let R € &4. By the infimum definition of u™, for any € > 0 there
is sequence S1,5y,... € & such that R C U2 ;5 and

RS HS) iR e (223)
k=1

(here, p is a measure on & that defines outer measure p™).
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Lemma 11.2.2

Lemma 11.2.2. Every set R in the Boolean o algebra <7, = o7,(</)
generated by &7 is i measurable. That is, o7, C /,,+.

Proof. Let R € &4. By the infimum definition of u™, for any € > 0 there
is sequence S1,5y,... € & such that R C U2 ;5 and

T(R) < Zu(Sk) <u"(R)+e (2.23)
k=1

(here, 1 is a measure on & that defines outer measure ™). For any
S € &/ we have (since Sy = (5kNS) WU (SkNS’) and p is a measure on &7
and hence countable additivity),

Y oS =Y m(SknS)U(SkNS)) =D (1(SkNS) +u(SkNS"))
— = k=1

(SN S)+> w(SknS) = pt(RNS)+u™(RNS') (2.24)
k=1 k=1
Modern Algebra April 21,2019 17 /19



Lemma 11.2.2

Lemma 11.2.2 (continued)

Lemma 11.2.2. Every set R in the Boolean o algebra <7, = o7,(</)
generated by &7 is it measurable. That is, 7, C ,,+.

Proof. ...since RNS C U2 ,(5,NS)and RNS' CURX,(ScNS).
Combining (2.23) and (2.24) we obtain
pt(R)+e>ut(RNS)+ut(RNS') or, since € > 0 is arbitrary,

pt(R) > pt(RNS)+ pt(RNS'). By subadditivity, we can reverse this
inequality and conclude that S is measurable; i.e., S € &7,+. Since S is an
arbitrary element of &/, then & C &/,,+.
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Lemma 11.2.2 (continued)

Lemma 11.2.2. Every set R in the Boolean o algebra <7, = o7,(</)
generated by &7 is it measurable. That is, 7, C ,,+.

Proof. ...since RNS C U2 ,(5,NS)and RNS' CURX,(ScNS).
Combining (2.23) and (2.24) we obtain
pt(R)+e>ut(RNS)+ut(RNS') or, since € > 0 is arbitrary,

pt(R) > pt(RNS)+ pt(RNS'). By subadditivity, we can reverse this
inequality and conclude that S is measurable; i.e., S € sz,ﬁ. Since S is an
arbitrary element of &/, then & C &/,,+.

So #7,+ is a Boolean o algebra by Lemma 11.2.1, and 7, = o7,(/) is the
smallest o algebra containing <7, so we must have <7, C .@/,+, as
claimed. 0
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Theorem 11.2.3

Theorem 11.2.3. Let 1 be a measure defined on the Boolean algebra .o/
of subsets of a given set 2. The set function

o= inf{Zu(sk)
k=1

for R € @, = o/,(47), is a measure on <7, which coincides with i on

o 1 [(S) = p(S) forall S € &7 If puis a o finite measure, then [ is also
o finite, and 11 is the only measure on o7, which coincides with i on 7.
The measure [i is called the extension of p.

R C UFZ1Sk, Sk € o for all n e N}
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Theorem 11.2.3

Theorem 11.2.3. Let 1 be a measure defined on the Boolean algebra .o/
of subsets of a given set 2. The set function

o= inf{Zu(sk)
k=1

for R € @, = o/,(47), is a measure on <7, which coincides with i on

o 1 [(S) = p(S) forall S € &7 If puis a o finite measure, then [ is also
o finite, and 11 is the only measure on o7, which coincides with i on 7.
The measure [i is called the extension of p.

R C UFZ1Sk, Sk € o for all n e N}

Proof.
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