Introduction to Functional Analysis, MATH 5740, Summer 2017

Homework 5, Chapter 2, Sections 6 and 8

Due Friday, June 23 at 11:20

Write in complete sentences!!! *Explain* what you are doing and convince me that you understand what you are doing and why. Justify all steps by quoting relevant results from the textbook or hypotheses.

- **2.22.** Prove that for linear space X with norms $\|\cdot\|_1$ and $\|\cdot\|_2$, if for all r > 0 there is s > 0 such that $B_2(0;s) \subseteq B_1(0;r)$ (where B_i denotes a ball with respect to $\|\cdot\|_i$), then $\|\cdot\|_1$ is weaker than $\|\cdot\|_2$. HINT: Use the definition of weaker norm.
- **2.25.** Let X be the space of all continuous functions f on [0, 1] such that f(0) = 0, with the sup norm. Let $Y = \{f \in X \mid \int_0^1 f(t) dt = 0\} \subseteq X$. Prove that for any $g \in X$ and positive integer $n \in \mathbb{N}$, there is a constant $\alpha \in \mathbb{R}$ such that $g \alpha t^{1/n} \in Y$. Conclude that perpendiculars to closed proper subspaces need not exist. HINT: Show that Y is closed (you will need uniform convergence under the sup norm for this). Assume g is a perpendicular to Y. Use properties of $||g||_{\infty}$ and $\int_0^1 g(t) dt$ to conclude g is the 0 function.
- **2.29** Let (x_n) be a sequence in a finite dimensional space X, and let $x \in X$ be such that for all $f \in \mathcal{B}(X, \mathbb{F})$ the sequence $f(x_n)$ converges to f(x). Prove that (x_n) converges to x. HINT: Suppose $\{b_1, b_2, \ldots, b_n\}$ is a basis of unit vectors for X. Consider $f_m \in \mathcal{B}(X, \mathbb{F})$ defined as

$$f_m(b_k) = \begin{cases} 1 & \text{if } m = k \\ 0 & \text{if } m \neq k \end{cases}$$

(then since f_m is linear, this defines f_m on all of X). Use an ε argument to show that $(x_n) \to x$ with respect to the sup norm. (Notice Theorem 2.31(b).)