Fundamentals of Functional Analysis MATH 5740, Summer 2021

Homework 4, Chapter 2

Due Monday, June 21 at 1:00

Write in complete sentences!!! *Explain* what you are doing and convince me that you understand what you are doing and why. Justify all steps by quoting relevant results from the textbook, notes, or hypotheses.

- **2.15.** Let $T: X \to Y$ be a linear operator. Prove $||T|| = \sup\{||Tx|| \mid x \in \overline{B}(1)\}$.
- **2.16.** Define $T: C[0,2] \to C[0,2]$ by $T(f)(t) = \int_0^t f(s) \, ds$. If the norm on C[0,2] is the sup norm, what is ||T||?
- **2.17.** Suppose (S_n) is a sequence in $\mathcal{B}(X, Y)$ converging to S and (T_n) is a sequence in $\mathcal{B}(Y, Z)$ converging to T. Prove that $(T_n S_n)$ converges to TS. HINT: Use a $\varepsilon/2$ argument. You may assume a Triangle Inequality on the operator norm (see the comment on page 20 that the operator norm actually *is* a norm on $\mathcal{B}(X, Y)$).