Fundamentals of Functional Analysis MATH 5740, Summer 2021

Homework 5, Chapter 2

Due Thursday, June 24 at 1:00

Write in complete sentences!!! *Explain* what you are doing and convince me that you understand what you are doing and why. Justify all steps by quoting relevant results from the textbook, notes, or hypotheses.

- **2.20.** Consider the sup norm on c_0 and c_{00} .
 - (a) Prove that in c_0 the series $\sum_{k=1}^{\infty} \delta_k / k$ is convergent but not absolutely convergent.
- **2.21.** Consider the interval $X = [1, \infty)$ with the metric d(x, y) = |x y| and the metric $d_1(x, y) = |1/x 1/y|$. Show the two metrics are equivalent in the sense that both have the same convergent sequences. HINT: Suppose $(x_n) \to y$ with respect to one of the metrics. Use an ε -argument, where ε is based on the value of y, to show convergence with respect to the other metric.
- **BONUS:** In Exercise 2.21, show that equivalent metrics do not necessarily preserve boundedness or completeness.
- **2.22.** Prove that for linear space X with norms $\|\cdot\|_1$ and $\|\cdot\|_2$, if for all r > 0 there is s > 0 such that $B_2(0;s) \subseteq B_1(0;r)$ (where B_i denotes a ball with respect to $\|\cdot\|_i$), then $\|\cdot\|_1$ is weaker than $\|\cdot\|_2$. HINT: Use the definition of weaker norm.