Fundamentals of Functional Analysis MATH 5740, Summer 2021

Homework 6, Chapter 2

Due Monday, June 28 at 1:00

Write in complete sentences!!! *Explain* what you are doing and convince me that you understand what you are doing and why. Justify all steps by quoting relevant results from the textbook, notes, or hypotheses.

- **2.23.** Prove that for X and Y are linear spaces with norms $\|\cdot\|_1$ and $\|\cdot\|_2$ respectively, if $\|\cdot\|_1$ and $\|\cdot\|_2$ are replaced by equivalent norms $\|\cdot\|_X$ and $\|\cdot\|_Y$ respectively, then the resulting norm on $\mathcal{B}(X,Y)$ is equivalent to the original. HINT: Let $\|\cdot\|_1$ and $\|\cdot\|_X$ be equivalent norms on X, let $\|\cdot\|_2$ and $\|\cdot\|_Y$ be equivalent norms on Y, let $\|\cdot\|_3$ be the norm on $\mathcal{B}(X,Y)$ resulting from $\|\cdot\|_1$ and $\|\cdot\|_2$, and let $\|\cdot\|_B$ be the norm on $\mathcal{B}(X,Y)$ resulting from $\|\cdot\|_X$ and $\|\cdot\|_Y$. Assume $\|\cdot\|_X$ is weaker than $\|\cdot\|_1$ and $\|\cdot\|_Y$ is weaker than $\|\cdot\|_3$ (you will need Exercise 2.15). You get $\|\cdot\|_3$ weaker than $\|\cdot\|_B$ by interchanging the other norms.
- **2.30.** Suppose that $T: X \to Y$ where X and Y are normed linear spaces, $T \in \mathcal{B}(X, Y)$ is bijective and bounded and T has a bounded inverse. Prove that we can replace the norm on Y by an equivalent norm so that X and Y are isometric.