Fundamentals of Functional Analysis MATH 5740, Summer 2021 Homework 8, Chapters 3 and 4 Due Sunday, July 11 at 5:00 p.m. (REALLY!!!)

Write in complete sentences!!! *Explain* what you are doing and convince me that you understand what you are doing and why. Justify all steps by quoting relevant results from the textbook, notes, or hypotheses.

- **3.4.** Let X be a linear space that has a countably infinite Hamel basis. Prove that there is no norm on X that will make it into a Banach space. HINT: Let $B = \{b_1, b_2, \ldots\}$ be a Hamel basis. Define $V_n = \operatorname{span}\{b_1, b_2, \ldots, b_n\}$. Show $X = \bigcup_{n=1}^{\infty} V_n$ and use Corollary 3.3.
- **4.1.** Prove that in any inner product space, two elements x and y are orthogonal if and only if $||x + \alpha y|| = ||x \alpha y||$ for all $\alpha \in \mathbb{C}$.
- **4.5.** Let (x_n) be a sequence in a Hilbert space H such that for all $y \in H$, $\langle x_n, y \rangle$ converges to $\langle x, y \rangle$ and such that $||x_n||$ converges to ||x||. Prove that (x_n) converges to x. HINT: Use an ε argument with $||x_n|| \to ||x||$ and $\langle x_n, x \rangle \to \langle x, x \rangle$ to show that $(x_n) \to x$.