Section 1.4. Normed Spaces

Note. In this section we consider analytic and topological properties of normed spaces.

Definition 1.4.1. A real valued function $\|\cdot\|$ on a vector space *E* is a *norm* if

(a) ||x|| = 0 if and only if x = 0,

- (b) $\|\lambda x\| = |\lambda| \|x\|$ for all $x \in E$ and for all $\lambda \in F$, and
- (c) $||x_y|| \le ||x|| + ||y||$ for all $x, y \in E$.

Example/Definition. \mathbb{R}^n is a normed vector space with

$$||x|| = ||(x_1, x_2, \dots, x_n)|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

The is the *Euclidean norm*.

Example. \mathbb{R}^n is a normed vector space with

$$||x|| = ||(x_1, x_2, \dots, x_n)|| = \max\{|x_1|, |x_2|, \dots, |x_n|\}.$$

Example. ℓ^p is a normed vector space with

$$||z|| = ||\{z_n\}|| = \left(\sum_{n=1}^{\infty} |z_n|^p\right)^{1/p}.$$

Note. In a vector space, a norm $\|\cdot\|$ yields a metric $d(\cdot, \cdot)$ through the definition $d(x, y) := \|x - y\|$. A metric $d(\cdot, \cdot)$ yields a norm $\|\cdot\|$ through the definition $\|x\| = d(x, 0)$.

Note. Just as absolute value can be used to define limits and convergence, a norm can be used for these definitions in a normed vector space.

Definition 1.4.3. Let $(E, \|\cdot\|)$ be a normed vector space. The sequence $\{x_n\}$ of elements of *E* converges to $x \in E$ if for all $\varepsilon > 0$, there exists $M \in \mathbb{N}$ such that $n \ge M$ we have $\|x_n - x\| < \varepsilon$. This is denoted $\lim x_n = x$ or $x_n \to x$.

Note. The following are properties of limits (see 1.18):

- 1. A convergent sequence has a unique limit.
- **2.** If $x_n \to x$ and $\lambda_n \to \lambda$ then $\lambda_n x_n \to \lambda x$.
- **3.** If $x_n \to x$ and $y_n \to y$ then $x_n + y_n \to x + y$.

Definition. Consider the space $\mathcal{C}(\Omega)$ of all continuous functions on a closed and bounded set $\Omega \subset \mathbb{R}^n$ (i.e., Ω is compact). A sequence $\{f_n\} \subset \mathcal{C}(\Omega)$ converges uniformly to f if for all $\varepsilon > 0$ there exists $M \in \mathbb{N}$ such that for all $x \in \Omega$ and for all $n \geq M$ we have $||f(x) - f_n(x)|| < \varepsilon$. **Definition 1.4.4.** Two norms on a vector space are *equivalent* if they define the same convergence (i.e., a sequence converges to 0 under one norm if and only if it converges to 0 under the other norm).

Theorem 1.4.1. Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be norms in a vector space E. Then $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent if and only if there exist positive α and β such that $\alpha \|x\|_1 \le \|x\|_2 \le \beta \|x\|_1$ for all $x \in E$.

Note. In Example 1.4.5, we see that "balls" in a normed vector space may not be round, depending on the norm.

Definition 1.4.6. A subset S of a normed space E is open if for all $x \in s$ there exists $\varepsilon > 0$ such that $B(x, \varepsilon) = \{y \in E \mid ||y - x|| < \varepsilon\} \subset S$. A subset S is closed if its complement $E \setminus S$ is open.

Note. The following theorem gives some properties of an open set in real analysis and also in the definition of a topology.

Theorem 1.4.2.

- (a) The union of any number of open sets is open.
- (b) The intersection of a finite number of open sets is open.
- (c) The union of a finite number of closed sets is closed.
- (d) The intersection of any number of closed sets is closed.
- (e) The empty set and the whole space are both open and closed.

Note. A familiar result from real analysis also holds in normed vector space, as follows.

Theorem 1.4.3. A subset S of a normed space E is closed if and only if for all convergent sequences of elements of S has its limit in S.

Definition 1.4.7. Let S be a subset of a normed vector space E. The *closure* of S, denoted cl(S), is the intersection of all closed sets containing S.

Definition 1.4.8. A subset S of a nomred vector space E is dense in E if cl(S) = E.

Example 1.4.8. A classic example from approximation theory is the fact that the set of polynomials on [a, b] is dense in C([a, b]) (the vector space of all functions continuous on [a, b]).

Theorem 1.4.5. Let S be a subset of a normed vector space E. The following are equivalent:

- (a) S is dense in E.
- (b) For all $x \in E$ there exists $\{x_n\} \subset S$ such that $x_n \to n$.
- (c) Every nonempty open subset of E contains an element of S.

Definition 1.4.9. A subset S of a normed vector space E is *compact* if every sequence $\{x_n\} \subset S$ contains a convergent subsequence whose limit is in S.

Example 1.4.9. In \mathbb{R}^n and \mathbb{C}^n , sets are compact if they are closed and bounded (this is the Heine-Borel Theorem).

Theorem 1.4.6. Compact sets are closed and bounded (in general).

Note. In an infinite dimensional space such as ℓ^2 , there exists closed and bounded sets which are not compact!

Revised: 4/18/2019