Section 1.5. Banach Spaces

Note. In this section we define completeness, Banach space, and give some examples of Banach spaces.

Definition 1.5.1. A sequence $\{x_n\}$ in a normed vector space is a *Cauchy sequence* if for all $\varepsilon > 0$ there exists $M \in \mathbb{N}$ such that $||x_m - x_n|| < \varepsilon$ for all m, n > M.

Theorem 1.5.1. The following are equivalent:

- (a) $\{x_n\}$ is a Cauchy sequence.
- (b) $||x_{p_n} x_{q_n}|| \to 0$ as $n \to \infty$ for all pairs of strictly increasing sequences of positive integers $\{p_n\}$ and $\{q_n\}$.
- (c) $||x_{p_{n+1}} x_{p_n}|| \to 0$ as $n \to \infty$ for every strictly increasing sequence of positive integers $\{p_n\}$.

Example. \mathbb{R}^n is a normed vector space with

$$|x|| = ||(x_1, x_2, \dots, x_n)|| = \max\{|x_1|, |x_2|, \dots, |x_n|\}.$$

Corollary 1.5.A. Every convergent sequence is Cauchy.

Note. The converse of this corollary is not true. Consider the space $\mathcal{P}([0,1])$ of all polynomials on [0,1] with norm $||P|| = \max_{x \in [0,1]} |P(x)|$. Consider the sequence

$$\{P_n(x)\} = \left\{1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}\right\}$$

This sequence converges in $\mathcal{C}([0,1])$ under the same norm (to $f(x) = e^x$) and so is Cauchy. However, $\{P_n(x)\}$ does not converge in $\mathcal{P}([0,1])$. Therefore, in general, Cauchy sequences are not convergent.

Lemma 1.5.1. If $\{x_n\}$ is a Cauchy sequence in a normed vector space, then the sequence of real numbers $\{||x_n||\}$ converges.

Note. See page 19 for an easy proof of Lemma 1.5.1. An implication is that a Cauchy sequence is bounded.

Definition 1.5.2. A normed vector space is *complete* if every Cauchy sequence of elements of E converges to an element of E. A complete normed vector space is a *Banach space*.

Theorem 1.5.A/Example 1.5.1. The space ℓ^2 is a Banach space.

Definition 1.5.3. A series $\sum_{n=1}^{\infty} x_n$ converges in a normed space E if the sequence of partial sums converges in E, i.e. there exists $x \in E$ such that

$$\left\| \left(\sum_{k=1}^{n} x_k \right) - x \right\| \to 0 \text{ as } n \to \infty.$$

This is denoted $\sum_{n=1}^{\infty} x_n = x$. If $\sum_{n=1}^{\infty} ||x_n|| < \infty$ then the series is absolutely convergent.

Note. A result seen in calculus is the following.

Theorem 1.5.2. A normed space is complete if and only if every absolutely convergent series converges.

Revised: 4/19/2019