Section 1.7. Completion of Normed Spaces

Note. In this section we define the completion of a normed space and the text argues that every normed space has a unique completion.

Definition. Let $(E, \|\cdot\|)$ be a normed space. The *completion* of E is the space $(\tilde{E}, \|\cdot\|_1)$ where

- (a) E is a subspace of E_1 ,
- (b) $||x|| = ||x||_1$ for all $x \in E$,
- (c) E is dense in \tilde{E} (i.e., $cl(E) = \tilde{E}$), and
- (d) \tilde{E} is complete.

Note. It is shown on pages 28 and 29 of the text that the completion of a normed space E exists and is unique.

Revised: 4/20/2019