Section 3.3. Examples of Inner Product Spaces

Note. We give several examples of inner product spaces.

Example 3.3.1. \mathbb{C} is an inner product space with $(x, y) = x\overline{y}$.

Example 3.3.2. \mathbb{C}^n is an inner product space with $(x, y) = \sum_{k=1}^n x_k \overline{y}_k$.

Example 3.3.3. The space ℓ^2 of all square summable complex sequences is an inner product space with $(x, y) = \sum_{k=1}^{\infty} x_k \overline{y}_k$. As we'll see, all infinite dimensional vector spaces (with a few additional details) are isomorphic to ℓ^2 .

Example 3.3.6. The space $L^2([a, b])$ of all Lebesgue square integrable functions on [a, b] is an inner product space with

$$(f,g) = \int_{a}^{b} f(x)\overline{g(x)} \, dx.$$

We'll do our quantum mechanics in L^2 .

Revised: 4/20/2019